

New Jersey Department of Environmental Protection Site Remediation Program

REMEDIAL ACTION PERMIT APPLICATION - SOIL

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION	3.4 de a Navida I ara diferenza
Site Name: Hess Corporation- Port Reading Refinery- AO	נ-כ ne Nortn Landfarm
List All AKAs:	
Street Address: 750 Cliff Rd	
	ship, Borough, or City)
County: Middlesex	Zip Code: 07077
Program Interest (PI) Number(s): 006148	Case Tracking Number(s):
SECTION B. PERMIT APPLICATION, MODIFICATION, AND	D TERMINATION FEES
Select One	
⊠ Remedial Action Permit Application\$6 □ Remedial Action Permit Modification\$4 □ Remedial Action Permit Termination\$6	00.00
SECTION C. FEE BILLING CONTACT PERSON	
Business Name: Hess Corporation	Phone: (732) 750-6934
Contact: John Engdahl	Title: Senior Specialist
Mailing Address: One Hess Plaza	
City/Town: Woodbridge State:	NJ Zip Code: 07095
Email Address: JEngdahl@Hess.com	
SECTION D. PERSON RESPONSIBLE FOR CONDUCTIN	G THE REMEDIATION - CO-PERMITTEE
	G THE REMEDIATION – CO-PERMITTEE Last Name of Contact: Engdahl
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING Affiliation/Name of Organization: Hess Corporation	Last Name of Contact: Engdahl
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist	
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza	Last Name of Contact: Engdahl
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com Primary Responsib	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com X Primary Responsib SECTION E. CURRENT OWNER OF THE SITE – CO-PER Affiliation/Name of Organization: Hess Corporation First Name of Contact: John	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance MITTEE
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com X Primary Responsib SECTION E. CURRENT OWNER OF THE SITE – CO-PER Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance MITTEE
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com X Primary Responsib SECTION E. CURRENT OWNER OF THE SITE – CO-PER Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: NJ Zip Code: 07095 lity for Permit Compliance MITTEE Last Name of Contact: Engdahl
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com X Primary Responsib SECTION E. CURRENT OWNER OF THE SITE – CO-PER Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934	Last Name of Contact: Engdahl Ext:Fax: (732) 750-6105 ate: _NJ
SECTION D. PERSON RESPONSIBLE FOR CONDUCTINA Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza City/Town: Woodbridge St Email Address: JEngdahl@Hess.com SECTION E. CURRENT OWNER OF THE SITE – CO-PER Affiliation/Name of Organization: Hess Corporation First Name of Contact: John Title: Senior Specialist Phone Number: (732) 750-6934 Mailing Address: One Hess Plaza	Last Name of Contact: Engdahl Ext: Fax: (732) 750-6105 ate: _NJ

SE	ECTION F. DEED NOTICE INFORMATION		
1.	Attach the following: Deed Notice)F format)	١
	 □ Deed Notice Termination Document (both in paper and electronically in Adobe PDF format) □ Remedial Action Report (RAR) (electronically only - in Adobe PDF format) 		
2.	Was a GIS compatible map of the Deed Notice sent to srpgis dn@dep.state.nj.us?	🛚 Yes	☐ No
	Deed Notice filing date: Pending		
	Block(s) and Lot(s): 757 and 1	∀ ∨	∏No
8.	Is the entire AOC restricted?	<u>r</u> 1€8	□ 140
_	If "No," what percent of the site is restricted?%	X V≏c	□No
9.	Is this Deed Notice for Historic Fill material at the site?		□ No
	If "Yes," is the Historic Fill material impacting the ground water at the site?	∑ Yes	□ No
	If "Yes," has the CEA/WRA Permit Fact Sheet Form been submitted to the NJDEF?	· VV	
			-
	ECTION G. FINANCIAL ASSURANCE	⊠ Yes	□No
1.	Did the Deed Notice include an engineering control?	_	,40
် ၁	Are any of the entities identified in Section D or E exempt from establishing financial assurance	41"	
۷.	pursuant to N.J.A.C. 7:26C-7.10(c)?	☐ Yes	⊠ No
	Check the exemption that applies:		
	Person Responsible Current		
	for Conducting the Owner of Remediation – the Site –		
	<u>Co-Permittee</u>		
	Government entity		
	☐		
	A person that conducted remediation at their primary		
	or secondary residence		
	Owner or operator of a child care center		
	Public school or private school		
	Owner or operator of a small business responsible for conducting remediation at the location of the business		
3.	Is the current owner of the site either a homeowner association or a condominium association	□ V -	[☑] kii:
	pursuant to the New Jersey Common Interest Association Act, N.J.S.A. 46:8A-1 et seq.?	.∟ res	⊠ No
	If "Yes," and the association is identified in Section D and E of this Permit Application, attach a copy of the association's annual budget that includes funds for the operation, maintenance, and monitoring of the engineering control(s) at the site.		
4.	Identify the estimated cost of operation, maintenance, and monitoring of the engineering		
	control(s) at the site: \$ 113,635.06	_	
5.	Is the estimate attached?	X Yes	☐ No
ı	What is the Financial Assurance Mechanism? (check all that apply) ☐ Remediation Trust Fund ☑ Line of Credit ☐ Loan or Grant		
ĺ	☐ Environmental Insurance Policy ☐ Letter of Credit		

	7. Identify the full amount established as a financial assurance: \$ 113,635.06 8. Contact information at the financial institution for the financial assurance:				
	Financial Institution: Pend				
	First Name of Contact:		ntact:		
	Mailing Address:				
	City/Town:		State:	Zip Code: _	
	Phone Number:		Ext:	Fax:	
9.	Attach a copy of the original f				
SE	CTION H. ENGINEERING C	ONTROL			
	Current Use for the Engineeri Industrial Residential Commercial Government Facility	☐ Park or Re ☐ Agricultura ☐ Road/Righ ☐ School	creational Use	hild Care Center ospital acant ther	
2.	If School or childcare was chehttp://www.nj.gov/dep/srp/gui	ecked above, is a p dance/srra/presum	resumptive remedy being er ptive remedy guidance DR	mployed (see RAFT.pdf)?	Yes N
	If "No," when was the remedy			_	
3.	Date Engineering Control wa	s installed: pendin	g		
		Date Engineering Control was installed. Portain 9 Identify below the materials used for the engineering control.			
	· · · · · · · · · · · · · · · · · · ·	ised for the engine	Sinig Condon		
	The state of the s	Talaka sala 1880 ka	BURNES CONTRACTOR SERVICES	ription Thickness	Units
	The state of the s		BURNES CONTRACTOR SERVICES	Thickness 5	Units Feet
	Area		Engineering Control Desc		
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet
	Area AOC-1 The North Landfarm		Engineering Control Desc Impermeable Cover	5	Feet

5. In the following table, please list all contaminants that require the use of a Deed Notice/engineering control (attach additional pages if needed).

Contaminant	Concentration (mg/kg)	Depth (feet)	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria
Benzene	3.05	2-4	3.0	13
Lead	774	0-2	400	600
Benzo(a)anthracene	1.19 J	4-6	0.90	4.0
Benzo(a)pyrene	0.764 J	4-6	0.66	0.66
Benzo(b)fluoranthene	1.28	2-4	0.90	4.0
Arsenic	47.6	4-6	20	20
Arcolor 1254 (PCBs)	0.793	0-2	0.49	2.0

SF	ECTION I. RECEPTOR EVALUATION SUMMARY	
	Have any of the following been identified within 200 feet of the site boundary?	
	Check all that apply.	1
	Residences Public parks and playgrounds	
	☐ Potable wells	
	Public and private schools (K-12) Tier 1 Well-head protection areas	
	Child care facilities	
2	<u> </u>	No
	If "Yes," date of Receptor Control: Date of IEC Contaminant Source Control:	
3.	Have any vapor mitigation systems been installed as a result of this soil contamination?	No
	If "Yes," identify the building(s) and/or structure(s) and vapor mitigation system(s) that is in place (e.g., active or passive). Please attach the Operation, Maintenance, and Monitoring (OMM) Plan for the vapor mitigation system(s) both in paper and electronically (in "MS Word" file format).	'

SECTION J. OTHER REMEDIATION PERMITS			
Are other Remediation Permits also being applied for or already	obtained?		
If "Yes," please list the Permit Type, Permit Number and Effective Date for other remediation permits.			
Remedial Action Permit- GW- Pending	·		
Trainedia, Assert Simil St. Foliating			
SECTION K. PERSON RESPONSIBLE FOR CONDUCTING THE CERTIFICATION	REMEDIATION INFORMATION AND		
Full Legal Name of the Person Responsible for Conducting the Rem	ediation: Hess Corporation		
Representative First Name: John R	epresentative Last Name: Engdahl		
Title: Senior Specialist			
Phone Number: (732) 750-6934 Ext:	Fax: (732) 750-6105		
Mailing Address: One Hess Plaza			
City/Town: Woodbridge State: NJ	Zip Code: 07095		
Email Address: JEngdahl@Hess.com			
This certification shall be signed by the person responsible for condin accordance with Administrative Requirements for the Remediation			
the information, to the hest of my knowledge. I helieve that the subm			
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false saware that if I knowingly direct or authorize the violation of any statu Signature:	tatement which I do not believe to be true. I am also		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false saware that if I knowingly direct or authorize the violation of any statu	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties.		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false aware that if I knowingly direct or authorize the violation of any statu Signature:	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submittin am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John R	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John R Title: Senior Specialist	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statusting signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John R Title: Senior Specialist Phone Number: (732) 750-6934 Ext:	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal		
aware that there are significant civil penalties for knowingly submittin am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John R Title: Senior Specialist Phone Number: (732) 750-6934 Ext: Mailing Address: One Hess Plaza	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal peresentative Last Name: Engdahl Fax: (732) 750-6105		
aware that there are significant civil penalties for knowingly submitting am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John R Title: Senior Specialist Phone Number: (732) 750-6934 Ext: Mailing Address: One Hess Plaza City/Town: Woodbridge State: NJ	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal n epresentative Last Name: Engdahl Fax: (732) 750-6105 Zip Code: 07095 d is submitting this notification in accordance with		
aware that there are significant civil penalties for knowingly submittin am committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John Rittle: Senior Specialist Phone Number: (732) 750-6934 Ext: Mailing Address: One Hess Plaza City/Town: Woodbridge State: NJ Email Address: JEngdahl@Hess.com This certification shall be signed by the person who owns the site and site in the s	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal No Changes Since Last Submittal Papersentative Last Name: Engdahl Fax: (732) 750-6105 Zip Code: 07095 d is submitting this notification in accordance with sites rule at N.J.A.C. 7:26C-1.5(a). In familiar with the information submitted herein, ose individuals immediately responsible for obtaining itted information is true, accurate and complete. I am g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also		
aware that there are significant civil penalties for knowingly submitting an committing a crime of the fourth degree if I make a written false is aware that if I knowingly direct or authorize the violation of any statu Signature: Name/Title: John Engdahl/ Senior Specialist SECTION L. CURRENT OWNER OF THE SITE – CO-PERMITTEE Full Legal Name of the Person who owns the site: Hess Corporation Representative First Name: John Rittle: Senior Specialist Phone Number: (732) 750-6934 Ext: Mailing Address: One Hess Plaza City/Town: Woodbridge State: NJ Email Address: JEngdahl@Hess.com This certification shall be signed by the person who owns the site and Administrative Requirements for the Remediation of Contaminated State I certify under penalty of law that I have personally examined and an including all attached documents, and that based on my inquiry of the the information, to the best of my knowledge, I believe that the submaware that there are significant civil penalties for knowingly submitting an committing a crime of the fourth degree if I make a written false state.	g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also te, I am personally liable for the penalties. Date: No Changes Since Last Submittal No Changes Since Last Submittal Papersentative Last Name: Engdahl Fax: (732) 750-6105 Zip Code: 07095 d is submitting this notification in accordance with sites rule at N.J.A.C. 7:26C-1.5(a). In familiar with the information submitted herein, ose individuals immediately responsible for obtaining itted information is true, accurate and complete. I am g false, inaccurate or incomplete information and that I statement which I do not believe to be true. I am also		

	NSED SITE REMEDIATION PRO 581780	DFESSIONAL INFO	RMATION AND STA	ATEMENT	
LOIN ID NUMBOR			ne: Carlson		
First Name: David	609) 387-5553	Last ival Ext:		(609) 387-5533	_
<u> </u>	3 Terri Ln, Suite #8	EXI	T GA.		
Mailing Address:		State: NJ		Zip Code: 08016	
City/Town: Burling		State: <u>140</u>			
Email Address: da	avec@envirotrac.com				
New Jersey. As the [SELECT ONE ☐ directly ove ☑ personally I believe that the inf	Licensed Site Remediation Profet Licensed Site Remediation Profet Cornel Site Remediation Profet OR BOTH OF THE FOLLOWING PROFESSION AND ACCEPTED ACCEPTED AND ACCEPTED ACCEPTED AND ACCEPTED ACCEPTED ACCEPTED AND ACCEPTED	essional of record to NG AS APPLICABL eferenced remediation referenced remedial encluding all attached	r this remediation, i. E]: on, and\or tion presented herein d documents, is true, a	n. accurate and complete.	in
submission to the D	epartment, conforms to, and is c	onsistent with, the h	emediation requireme	ents in N.J.S.A. 36. 100-14.	
My conduct and det the knowledge and accordance with N.	cisions in this matter were made skill ordinarily exercised by licen J.S.A. 58:10C-16, in the State of	upon the exercise o sed site remediation New Jersey at the t	f reasonable care and professionals praction performed these	d diligence, and by applying cing in good standing, in e professional services.	7
l am aware pursuar representation or ce significant civil, adn	nt to N.J.S.A. 58:10C-17 that for pertification in any document or into ninistrative and criminal penalties r conviction of a crime of the third	ourposely, knowingly formation submitted s, including license n	y or recklessly submit to the board or Depa	tting false statement, ettment, etc., that there are	ed
LSRP Signature:			Date:		
LSRP Name/Title:	David J. Carlson/ Senior Project	t Manager	No Changes S	ince Last Submittal 🗵	
Company Name:	EnviroTrac Ltd.			_	_

Completed forms should be sent to:

Bureau of Case Assignment & Initial Notice Site Remediation Program NJ Department of Environmental Protection 401-05H PO Box 420 Trenton, NJ 08625-0420

Financial Assurance Documentation As Per USEPA CostPro 6.0

Hess Corporation- Port Reading Refinery- AOC- 1 the North Landfarm P001

Address: 750 Cliff Road

Port Reading NEW JERSEY

07077

Comments: Includes cost of 30-year Monthly Inspection Monitoring, with \$500 annual for

repairs or other maintenance, and \$5,327.06 allowed for Final Closure Costs.

Activity Units Closure Cost

Post Closure Care 1 \$113,635.06

\$113,635.06

Contact: David Carlson or Sarah Dyson

609-387-5553

Additional Costs \$0.00

Total Estimated Cost \$113,635.06

Unit: Unit1

Facility: Hess Corporation- Port Reading Refinery- AOC- 1 the North Landfarm

04/25/2013

Post-Closure Care Summary (PC_01-1)

Removal of Leachate (PC-02)	\$0.00	
Site Security (PC-03)	\$0.00	
Maintenance of Vegetative Cover (PC-04)	\$0.00	
Maintenance and Inspection (PC-05)	\$81,244.40	
Groundwater Monitoring(PC-06)	\$0.00	
Deed Notation (PC-07)	\$0.00	
Maintenance and Inspection of Asphalt Cover (PC-8)	\$0.00	
Surface Emission Monitoring (PC-09)	\$0.00	
Gas Extraction System and Perimeter Probe Monitoring (PC-10)	\$0.00	
User Defined Cost (UD-01)	\$0.00	
Subtotal of Post-Closure Costs	\$81,244.40	
Percentage of Engineering Expenses	10.0	%
Engineering Expenses	\$8,124.44	
Certification of Post-Closure (PC-11)	\$5,327.04	
Subtotal	\$94,695.88	
Percentage of Contingency Allowance	20.0	%
Contingency Allowance	\$18,939.18	
TOTAL COST OF POST-CLOSURE CARE	\$113,635.06	

Facility: Hess Corporation- Port

Reading Refinery- AOC- 1 the North Landfarm

Unit: Unit1

04/25/2013

Post-Closure Care Rep. and Insp. of Veg. Cover (PC_05-1)

MAINTENANCE AND REPAIR OF FINAL COVER

Cost of installing undifferentiated fill \$0.00 Cost of installing clay layer \$0.00 Cost of installing geomembrane \$0.00 Cost of installing drainage layer \$500.00 Cost of installing earthen layer \$0.00 Cost of installing topsoil \$0.00 Cost of installing colloid clay layer \$0.00 Total cost of installing final cover \$500.00 Maintenance and repair factor 10.0 % Cost to Maintain and Repair Final Cover \$50.00

POST-CLOSURE CARE INSPECTION

Cost of conducting one inspection \$225.54 per Inspection Number of inspections per year 12 Inspections per Year \$2,706.48 Cost of conducting post-closure care inspections per year per Year Number of years in post-closure care period Years 30 Cost to Conduct Inspections Over the Post-Closure Care Period \$81,194.40 TOTAL COST OF REPAIR AND INSPECTION \$81,244.40

Notes: Represents costs of repair and maintenance of impermeable cap plus 500 annually for neccesary repairs.

Facility: Hess Corporation- Port

Reading Refinery- AOC- 1

Unit: Unit1

04/25/2013

the North Landfarm

Certification of Completion of Post-Closure Care (PC_11-1)

Number of units requiring certification of completion of postclosure care

Units

Cost of certification of completion of post-closure care per unit

\$5,327.04

1

per Unit

TOTAL COST OF CERTIFICATION OF POST-CLOSURE CARE

\$5,327.04

Deed Notice

IN ACCORDANCE WITH N.J.S.A. 58:10B-13, THIS DOCUMENT IS TO BE RECORDED IN THE SAME MANNER AS ARE DEEDS AND OTHER INTERESTS IN REAL PROPERTY.

Prepared by:		
[Signature]		
David J. Carlson on behalf of Hess Cor	rporation- Port Re	ading
Recorded by:		
[Signature, Officer of County Recording		
[Print name below signature]		
_		
Dl	EED NOTICE	
TILL D. IN C. 1. C.1.	1 6	
This Deed Notice is made as of the ess Plaza, Woodbridge, Middlesex Count		
ecessors and assigns, collectively "Owner		getter with ms/ ner/its/ then
<u> </u>	, .	

1. THE PROPERTY. Hess Corporation of One Hess Plaza, Woodbridge, Middlesex County, New Jersey is the owner in fee simple of certain real property designated as Block(s) 757 Lot 1, on the tax map of the Township of Woodbridge, Middlesex County; the New Jersey Department of Environmental Protection Program Interest Number (Preferred ID) for the contaminated site which includes this property is # 006148 and the property is more particularly described in Exhibit A, which is attached hereto and made a part hereof (the "Property").

2. REMEDIATION and DEPARTMENTAL OVERSIGHT.

- i. DEPARTMENT'S ASSIGNED BUREAU. The Bureau of Case Management is the New Jersey Department of Environmental Protection program that was responsible for the oversight of the remediation of the Property. The area is commonly known as Area of Concern (AOC) 1- the North Landfarm
- ii. N.J.A.C. 7:26C-7 requires the Owner, among other persons, to obtain a soil remedial action permit for the soil remedial action at the Property. That permit will contain the monitoring, maintenance and biennial certification requirements that apply to the Property.
- 3. SOIL CONTAMINATION. Hess Corporation has remediated contaminated soil at the Property, such that soil contamination remains in certain areas of the Property that contains contaminants in concentrations that do not allow for the unrestricted use of the Property; this soil

contamination is described, including the type, concentration and specific location of such contaminants, in Exhibit B, which is attached hereto and made a part hereof. As a result, there is a statutory requirement for this Deed Notice and engineering controls in accordance with N.J.S.A. 58:10B-13.

- 4. CONSIDERATION. In accordance with the remedial action for the site which included the Property, and in consideration of the terms and conditions of that remedial action, and other good and valuable consideration, Owner has agreed to subject the Property to certain statutory and regulatory requirements that impose restrictions upon the use of the Property, to restrict certain uses of the Property, and to provide notice to subsequent owners, lessees and operators of the restrictions and the monitoring, maintenance, and biennial certification requirements outlined in this Deed Notice and required by law, as set forth herein.
- 5A. RESTRICTED AREAS. Due to the presence of contamination remaining at concentrations that do not allow for unrestricted use, the Owner has agreed, as part of the remedial action for the Property, to restrict the use of certain parts of the Property (the "Restricted Areas"); a narrative description of these restrictions is provided in Exhibit C, which is attached hereto and made a part hereof. The Owner has also agreed to maintain a list of these restrictions on site for inspection by governmental officials.
- 5B. RESTRICTED LAND USES. The following statutory land use restrictions apply to the Restricted Areas:
- i. The Brownfield and Contaminated Site Remediation Act, N.J.S.A. 58:10B-12.g(10), prohibits the conversion of a contaminated site, remediated to non-residential soil remediation standards that require the maintenance of engineering or institutional controls, to a child care facility, or public, private, or charter school without the Department's prior written approval, unless a presumptive remedy is implemented; and
- ii. The Brownfield and Contaminated Site Remediation Act, N.J.S.A. 58:10B-12.g(12), prohibits the conversion of a landfill, with gas venting systems and or leachate collection systems, to a single family residence or a child care facility without the Department's prior written approval.
- 5C. ENGINEERING CONTROLS. Due to the presence and concentration of these contaminants, the Owner has also agreed, as part of the remedial action for the Property, to the placement of certain engineering controls on the Property; a narrative description of these engineering controls is provided in Exhibit C.

6A. CHANGE IN OWNERSHIP AND REZONING.

i. The Owner and the subsequent owners and lessees, shall cause all leases, grants, and other written transfers of an interest in the Restricted Areas to contain a provision expressly requiring all holders thereof to take the Property subject to the restrictions contained herein and to comply with all, and not to violate any of the conditions of this Deed Notice. Nothing

contained in this Paragraph shall be construed as limiting any obligation of any person to provide any notice required by any law, regulation, or order of any governmental authority.

- ii. The Owner and the subsequent owners shall provide written notice to the Department of Environmental Protection on a form provided by the Department and available at www.nj.gov/srp/forms within thirty (30) calendar days after the effective date of any conveyance, grant, gift, or other transfer, in whole or in part, of the owner's interest in the Restricted Area.
- iii. The Owner and the subsequent owners shall provide written notice to the Department, on a form available from the Department at www.nj.gov/srp/forms, within thirty (30) calendar days after the owner's petition for or filing of any document initiating a rezoning of the Property to residential.
- 6B. SUCCESSORS AND ASSIGNS. This Deed Notice shall be binding upon Owner and upon Owner's successors and assigns, and subsequent owners, lessees and operators while each is an owner, lessee, or operator of the Property.

7A. ALTERATIONS, IMPROVEMENTS, AND DISTURBANCES.

- i. The Owner and all subsequent owners and lessees shall notify any person, including, without limitation, tenants, employees of tenants, and contractors, intending to conduct invasive work or excavate within the Restricted Areas, of the nature and location of contamination in the Restricted Areas, and, of the precautions necessary to minimize potential human exposure to contaminants.
- ii. Except as provided in Paragraph 7B, below, no person shall make, or allow to be made, any alteration, improvement, or disturbance in, to, or about the Property which disturbs any engineering control at the Property without first obtaining a soil remedial action permit modification pursuant to N.J.A.C. 7:26C-7. Nothing herein shall constitute a waiver of the obligation of any person to comply with all applicable laws and regulations including, without limitation, the applicable rules of the Occupational Safety and Health Administration.
- iii. Notwithstanding subparagraph 7Aii., above, a soil remedial action permit modification is not required for any alteration, improvement, or disturbance provided that the owner, lessee or operator:
 - (A) Notifies the Department of Environmental Protection of the activity by calling the DEP Hotline, at 1-877-WARN-DEP or 1-877-927-6337, within twenty-four (24) hours after the beginning of each alteration, improvement, or disturbance;
 - (B) Restores any disturbance of an engineering control to pre-disturbance conditions within sixty (60) calendar days after the initiation of the alteration, improvement or disturbance:

- (C) Ensures that all applicable worker health and safety laws and regulations are followed during the alteration, improvement, or disturbance, and during the restoration;
- (D) Ensures that human exposure to contamination in excess of the remediation standards does not occur; and
- (E) Describes, in the next biennial certification the nature of the alteration, improvement, or disturbance, the dates and duration of the alteration, improvement, or disturbance, the name of key individuals and their affiliations conducting the alteration, improvement, or disturbance, a description of the notice the Owner gave to those persons prior to the disturbance.
- 7B. EMERGENCIES. In the event of an emergency which presents, or may present, an unacceptable risk to the public health and safety, or to the environment, or immediate environmental concern, see N.J.S.A. 58:10C-2, any person may temporarily breach an engineering control provided that that person complies with each of the following:
 - i. Immediately notifies the Department of Environmental Protection of the emergency, by calling the DEP Hotline at 1-877-WARNDEP or 1-877-927-6337;
 - ii. Hires a Licensed Site Remediation Professional (unless the Restricted Areas includes an unregulated heating oil tank) to respond to the emergency;
 - iii. Limits both the actual disturbance and the time needed for the disturbance to the minimum reasonably necessary to adequately respond to the emergency;
 - iv. Implements all measures necessary to limit actual or potential, present or future risk of exposure to humans or the environment to the contamination;
 - v. Notifies the Department of Environmental Protection when the emergency or immediate environmental concern has ended by calling the DEP Hotline at 1-877-WARNDEP or 1-877-927-6337; and
 - vi. Restores the engineering control to the pre-emergency conditions as soon as possible, and provides notification to the Department of Environmental Protection within sixty (60) calendar days after completion of the restoration of the engineering control, including: (a) the nature and likely cause of the emergency; (b) the potential discharges of or exposures to contaminants, if any, that may have occurred; (c) the measures that have been taken to mitigate the effects of the emergency on human health and the environment; (d) the measures completed or implemented to restore the engineering control; and (e) the changes to the engineering control or site operation and maintenance plan to prevent reoccurrence of such conditions in the future.

8. TERMINATION OF DEED NOTICE.

- i. This Deed Notice may be terminated only upon filing of a Termination of Deed Notice, available at N.J.A.C. 7:26C Appendix C, with the office of the Registry Office of Middlesex County, New Jersey, expressly terminating this Deed Notice.
- ii. Within thirty (30) calendar days after the filing of a Termination of Deed Notice, the owner of the property shall apply to the Department for termination of the soil remedial action permit pursuant to N.J.A.C. 7:26C-7.
- 9. ACCESS. The Owner, and the subsequent owners, lessees and operators agree to allow the Department, its agents and representatives access to the Property to inspect and evaluate the continued protectiveness of the remedial action that includes this Deed Notice and to conduct additional remediation to ensure the protection of the public health and safety and of the environment if the subsequent owners, lessees and operators, during their ownership, tenancy, or operation, and the Owner fail to conduct such remediation pursuant to this Deed Notice as required by law. The Owner, and the subsequent owners and lessees, shall also cause all leases, subleases, grants, and other written transfers of an interest in the Restricted Areas to contain a provision expressly requiring that all holders thereof provide such access to the Department.

10. ENFORCEMENT OF VIOLATIONS.

- i. This Deed Notice itself is not intended to create any interest in real estate in favor of the Department of Environmental Protection, nor to create a lien against the Property, but merely is intended to provide notice of certain conditions and restrictions on the Property and to reflect the regulatory and statutory obligations imposed as a conditional remedial action for this site.
- ii. The restrictions provided herein may be enforceable solely by the Department against any person who violates this Deed Notice. To enforce violations of this Deed Notice, the Department may initiate one or more enforcement actions pursuant to N.J.S.A. 58:10-23.11, and N.J.S.A. 58:10C, and require additional remediation and assess damages pursuant to N.J.S.A. 58:10-23.11, and N.J.S.A. 58:10C.
- 11. SEVERABILITY. If any court of competent jurisdiction determines that any provision of this Deed Notice requires modification, such provision shall be deemed to have been modified automatically to conform to such requirements. If a court of competent jurisdiction determines that any provision of this Deed Notice is invalid or unenforceable and the provision is of such a nature that it cannot be modified, the provision shall be deemed deleted from this instrument as though the provision had never been included herein. In either case, the remaining provisions of this Deed Notice shall remain in full force and effect.

12A. EXHIBIT A. Exhibit A includes the following maps of the Property and the vicinity:

i. Exhibit A-1: Vicinity Map - A map that identifies by name the roads, and other important geographical features in the vicinity of the Property (for example, USGS Quad map, Hagstrom County Maps);

- ii. Exhibit A-2: Metes and Bounds Description A tax map of lots and blocks as wells as metes and bounds description of the Property, including reference to tax lot and block numbers for the Property;
- iii. Exhibit A-3: Property Map A scaled map of the Property, scaled at one inch to 200 feet or less, and if more than one map is submitted, the maps shall be presented as overlays, keyed to a base map; and the Property Map shall include diagrams of major surface topographical features such as buildings, roads, and parking lots.
- 12B. EXHIBIT B. Exhibit B includes the following descriptions of the Restricted Areas:
- i. Exhibit B-1: Restricted Area Map A separate map for each restricted area that includes:
 - (A) As-built diagrams of each engineering control, including caps, fences, slurry walls, (and, if any) ground water monitoring wells, extent of the ground water classification exception area, pumping and treatment systems that may be required as part of a ground water engineering control in addition to the deed notice
 - (B) As-built diagrams of any buildings, roads, parking lots and other structures that function as engineering controls; and
 - (C) Designation of all soil and sediment sample locations within the restricted areas that exceed any soil or sediment standard that are keyed into one of the tables described in the following paragraph.
- ii. Exhibit B-2: Restricted Area Data Table A separate table for each restricted area that includes either (A) or (B) through (F):
 - (A) Only for historic fill extending over the entire site or a portion of the site and for which analytical data are limited or do not exist, a narrative that states that historic fill is present at the site, a description of the fill material (e.g., ash, cinders, brick, dredge material), and a statement that such material may include, but is not limited to, contaminants such as PAHs and metals;
 - (B) Sample location designation from Restricted Area map (Exhibit B-1);
 - (C) Sample elevation based upon mean sea level;
 - (D) Name and chemical abstract service registry number of each contaminant with a concentration that exceeds the unrestricted use standard;
 - (E) The restricted and unrestricted use standards for each contaminant in the table; and

(F) The	remaining	concentration	of each	contaminant	at each	sample	location	at each
elevation.								

- 12C. EXHIBIT C. Exhibit C includes narrative descriptions of the institutional controls and engineering controls as follows:
 - i. Exhibit C-1: Deed Notice as Institutional Control: Exhibit C-1 includes a narrative description of the restriction and obligations of this Deed Notice that are in addition to those described above, as follows:
 - (A) Description and estimated size of the Restricted Areas as described above;
 - (B) Description of the restrictions on the Property by operation of this Deed Notice; and
 - (C) The objective of the restrictions.

document:

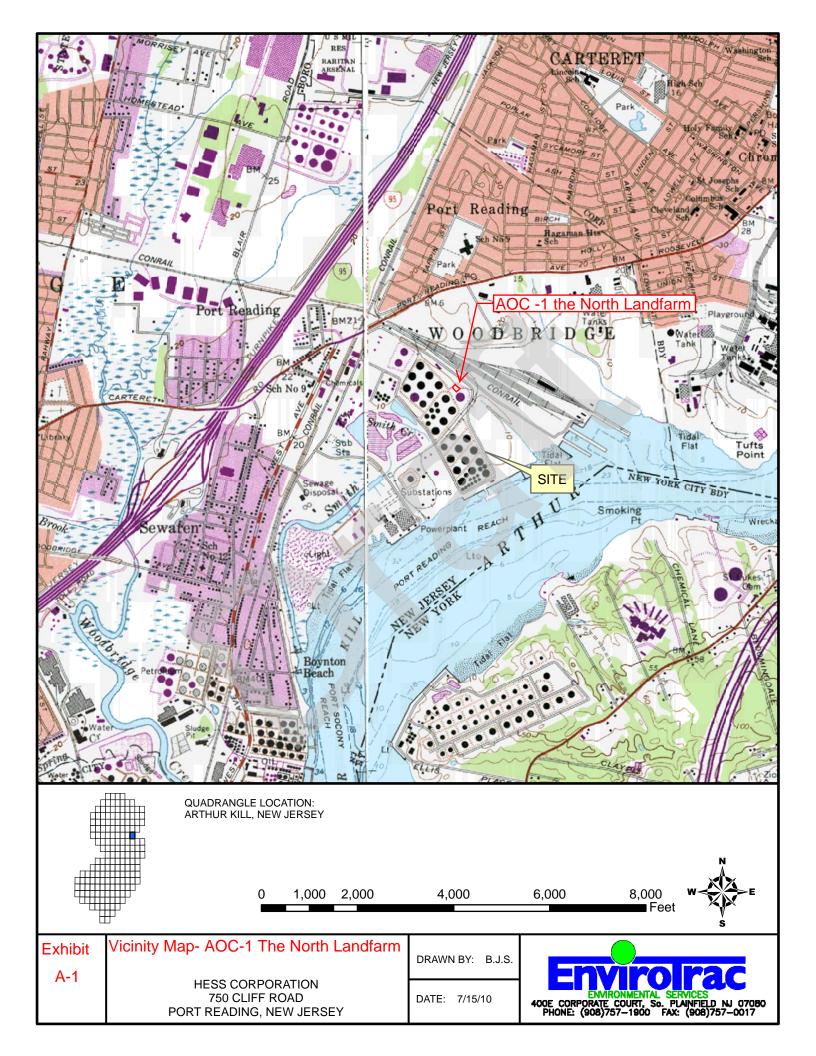
- ii. Exhibit C-2: Impermeable Cap and Fence: Exhibit C-2 includes a narrative description of the Impermeable Cap and Fence as follows:
 - (A) Description of the engineering control;
 - (B) The objective of the engineering control; and
 - (C) How the engineering control is intended to function.
- 13. SIGNATURES. IN WITNESS WHEREOF, Owner has executed this Deed Notice as of the date first written above.

ATTEST:	Hess Corporation	
	By	
John Engdahl	[Signature]	
STATE OF NEW JERSE COUNTY OF MIDDLE		
I certify that onacknowledged under oath, to	, 20, John Engdahl personally came before me, and this person satisfaction, that:	on
(a) this person is the desi	nated signee of Hess Corporation the corporation named in this	

- (b) this person is the attesting witness to the signing of this document by the proper corporate officer who is the vice president of the corporation;
- (c) this document was signed and delivered by the corporation as its voluntary act and was duly authorized;
- (d) this person knows the proper seal of the corporation which was affixed to this document; and

(e) this person signed this proof to attest to the	e truth of these facts.
[Signature]	
[Print name and title of attesting witness]	
Signed and sworn before me on, 20	
, N	otary Public
[Print name and title]	

EXHIBIT A


Exhibit A-1: Vicinity Map

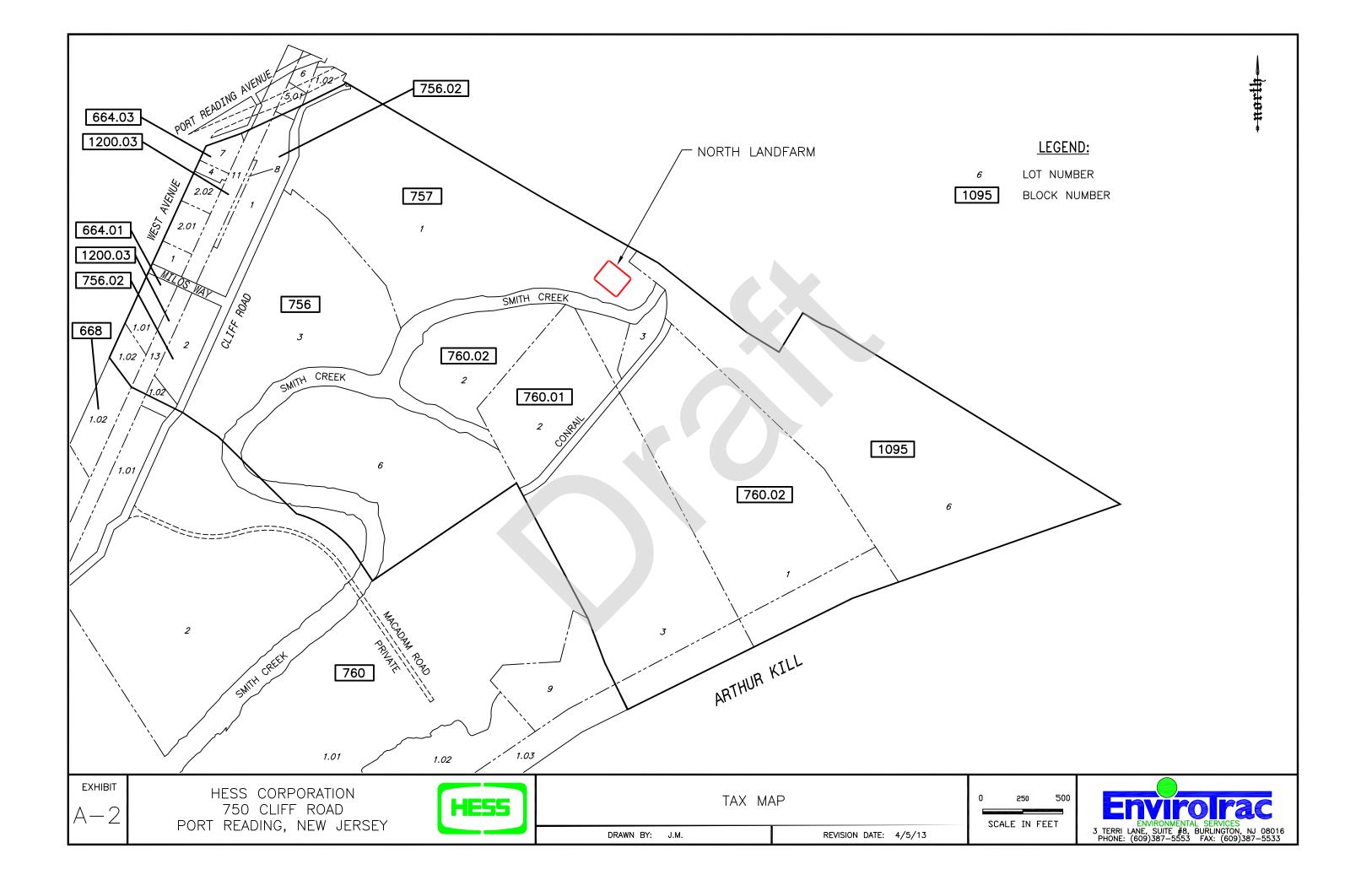
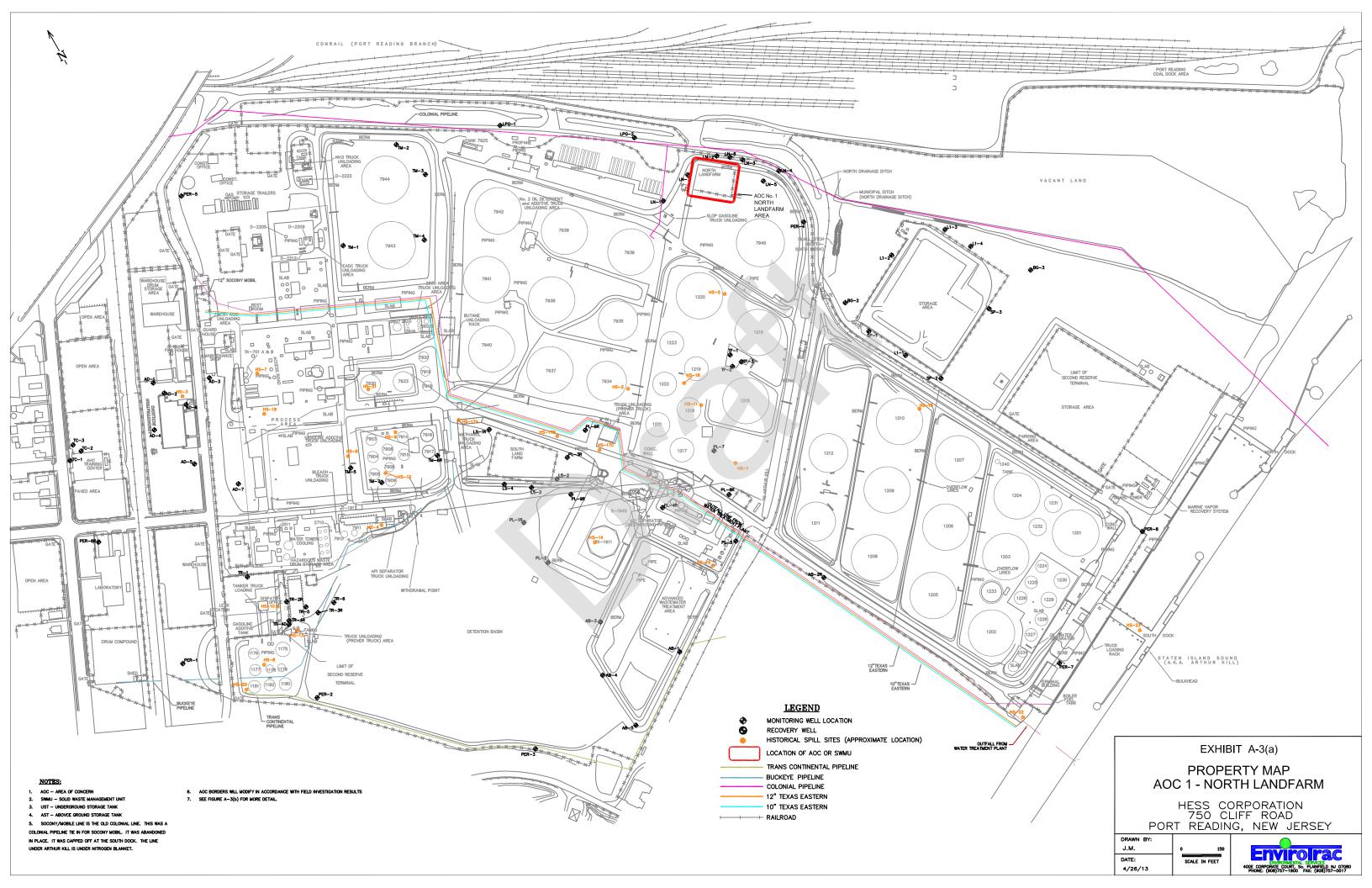
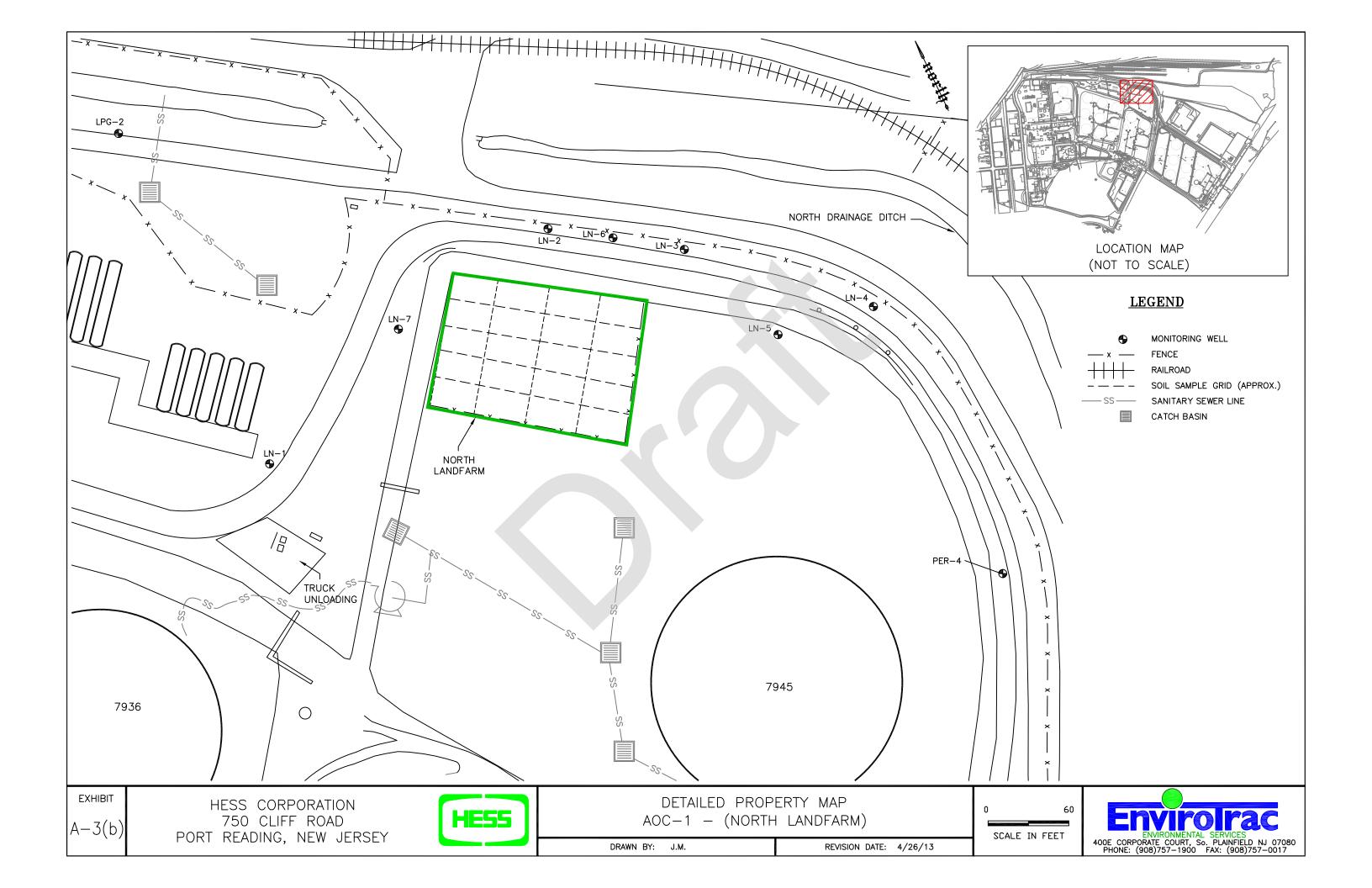

Exhibit A-2: Tax Map and Metes and Bounds Description

Exhibit A-3(a): Property Map

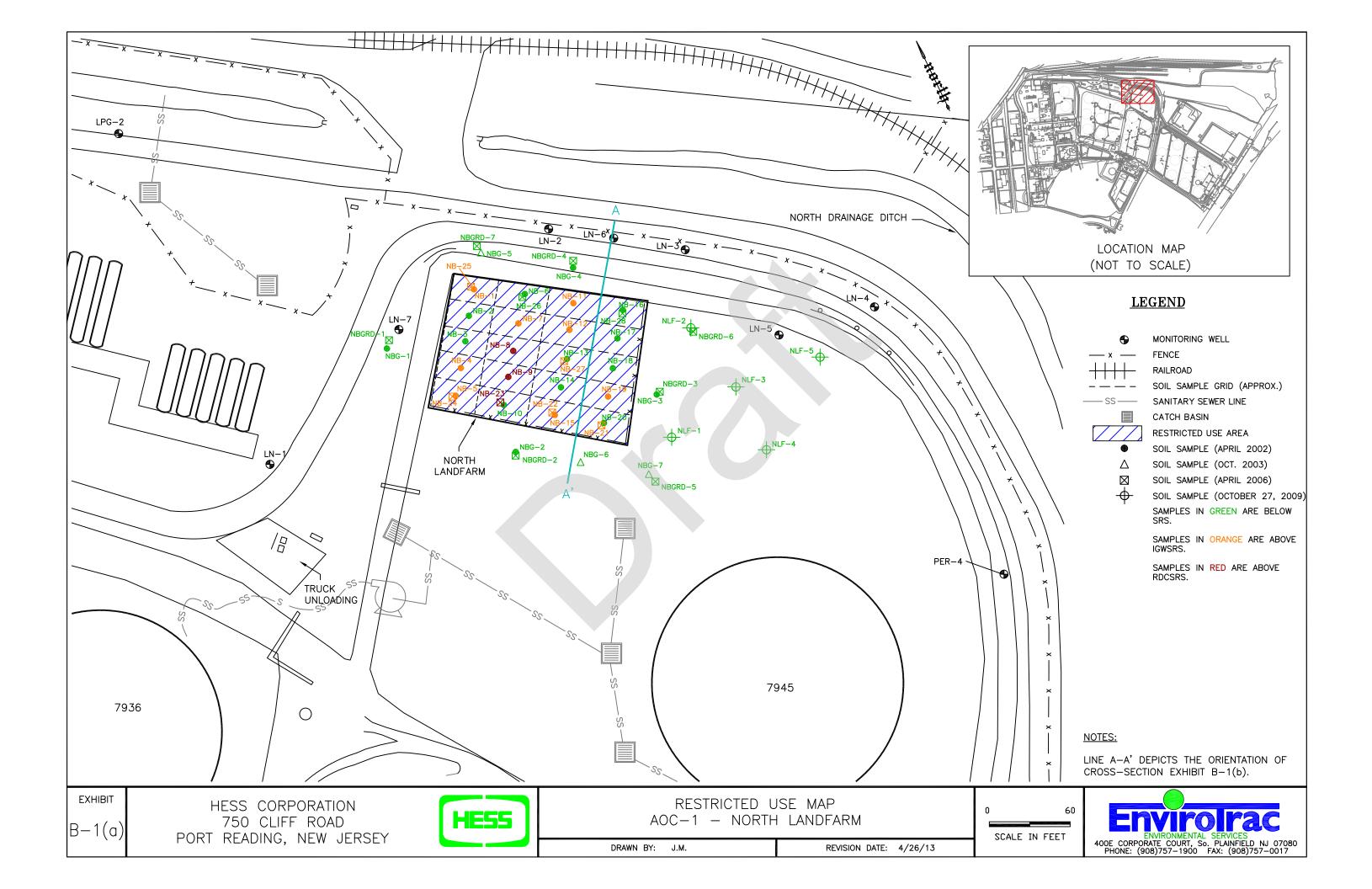
Exhibit A-3(b): Detailed Property Map


Exhibit A-2: Metes and Bounds


ALL that certain tract, lot and parcel of land lying and being in the unincorporated Community of Port Reading, Township of Woodbridge, County of Middlesex and State of New Jersey, being more particularly described as follows:

The land referred to in this Commitment is commonly known as Lot 1, Block 757 on the Tax Map, City of Union City, in the County of Hudson.

More particularly the parcel of land starting at 40 degrees 33 feet 50.16 inches North; 74 degrees 14 feet 34.34 inches West and continuing 100 feet North-Northeast to 40 degrees 33 feet 50.90 inches North; 74 degrees 14 feet 33.48 inches West, and continuing 145 feet East-Southeast to 40 degrees 33 feet 50.01 inches North; 74 degrees 14 feet 32.09 inches West, and continuing 100 feet South-Southwest to 40 degrees 33 feet 49.27 inches North; 74 degrees 14 feet 32.92 inches West, and continuing 145 feet West-Northwest, to the place whence begun.


EXHIBIT B

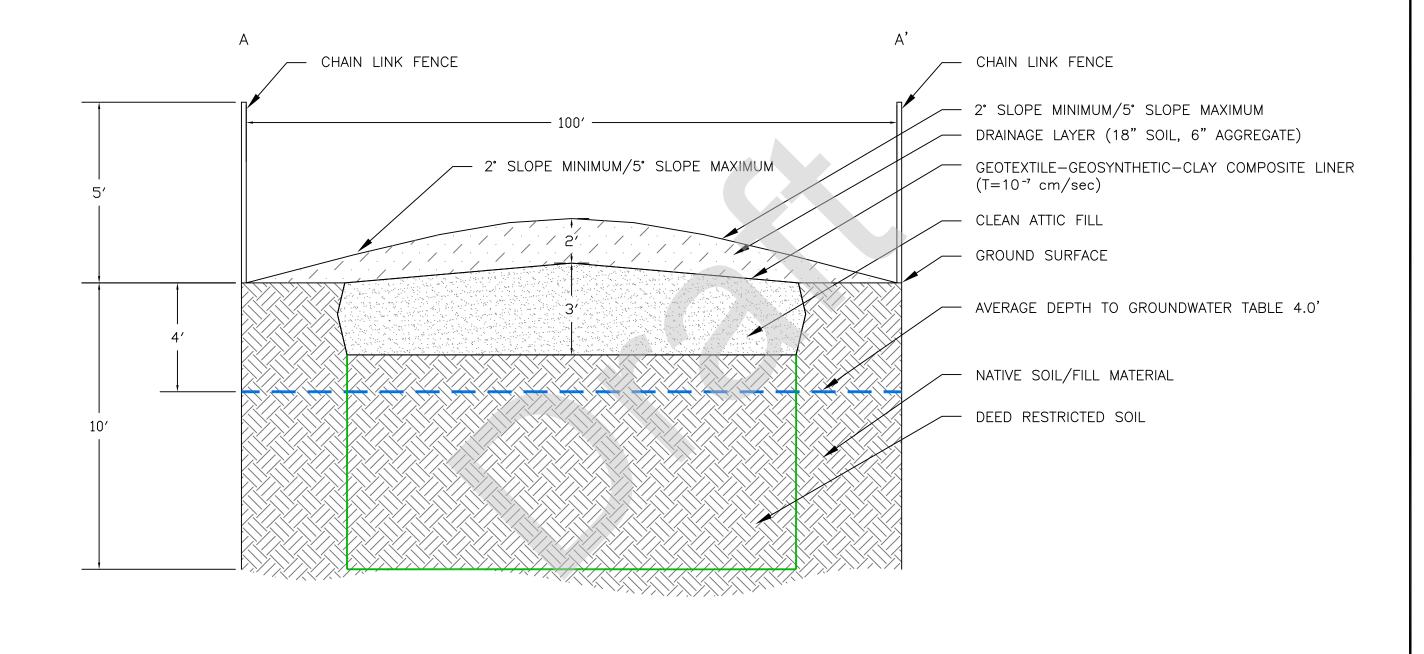

Exhibit B-1(a): Restricted Use Map

Exhibit B-1(b); Restricted Use Map- Engineering Control

Exhibit B-2: Restricted Use Area Data Table

EXHIBIT

B-1(b)

HESS CORPORATION 750 CLIFF ROAD PORT READING, NEW JERSEY

DRAWN BY: J.M.

REVISION DATE: 4/26/13

Table B-2 Restricted Data Table North Landfarm History Soil Sampling Analytical Summary Hess Corporation- Port Reading Refinery 750 Cliff Road

Port Reading, Middle	sex County, New Jersey
----------------------	------------------------

Sample Location	Sample Date	Sample Depth (ft)	Approximate Elevation Above mean sea level (msl) in feet	Benzene (CAS # 9072-35- 9)	Toluene (CAS # 108-88-3)	Ethylbenzene (CAS #100-41-4)	Total Xylenes (CAS # 1330-20- 7)	Chlorobenzene (CAS # 108-90-7)	Total Petroleum Hydrocarbon Content (TPHC)	Cadmium (CAS # 7440-43- 9)	Chromium (CAS # 7440-47- 3)	Copper (CAS # 7440-50- 8)	Lead (CAS # 7439-92- 1)	Nickel (CAS # 7440-02- 0)	Zinc (CAS # 7440-66- 6)	Cation Exchange Capacity	Oil & Greese	Phenols (CAS # 108-95-2)	% Solids %	(ns) Hd
	NRDCSCC			13	1,000	1,000	170,000	680	-	100		600	600	2,400	1,500	-	-	10,000	-	-
	RDCSCC			3	1,000	1,000	12,000	37	-	39		600	400	250	1,500	-	-	10,000	-	-
	IGWSCC	1		1	500	100	67	1	-							-	-	50	-	-
		0-2	10-8	ND	ND	0.613	0.329	ND	21,900	0.70	241	245	281	71.9	441	2,490	38,100	<14	89.1	5.99 ^b
		2-4	8-6	ND 0.134 J	ND 0.111 J	2.32	1.07 4.27	ND ND	29,700	0.85 <0.60	64.3	93.1	93.1	46.9	204	5,530 2,680	2,570	<19	65.2	6.61 ^b
NB-1	4/25/2002	4-6 6-8	6-4 4-2	0.134 J ND	ND ND	5.66 ND	4.27 ND	ND	3,940 73.3	<0.58	68.8	269 17.8	72.4 9.2	81.3 9.0	126 29.2	678	11,500 <500	<14 <14	87.0 86.6	6.60 ^b 6.23 ^b
		8-10	2-0	0.14	ND	0.509	0.367	ND	785	<0.62	39.2	54.3	46.3	16.1	78.7	1,120	2,800	<15	84.1	6.23°
		0-10	2-0	0.14	IND	0.503	0.507	ND	700	V0.02	55.2	34.3	40.5	10.1	70.7	1,120	2,000	V10	04.1	6.91
		0-2	10-8	ND	ND	0.911	0.528	ND	18,900	0.69	286	282	285	68.7	429	2,200	31,900	<14	87.0	6.27 ^b
		2-4	8-6	ND	ND	0.278	ND	ND	4,090	< 0.55	64.2	79.4	74.2	19.3	118	1,220	6,490	<14	90.6	5.61 ^b
NB-2	4/25/2002	4-6	6-4	ND	ND	4.18	6.18	ND	2,830	< 0.55	55.8	69.1	68.6	17.7	107	1,180	6,140	<13	91.7	5.43 ^b
ND-Z	4/23/2002	6-8	4-2	ND	ND	ND	ND	ND	81.2	0.84	23.5	186	24.7	23.9	74.5	2,760	<500	<15	79.3	5.50 ^b
		8-10	2-0	ND	ND	ND	ND	ND	1,800	1.4	63.3	75.2	131	20.3	111	2,290	4,240	<14	85.0	6.24 ^b
		0-2	10-8	ND	ND	ND	0.296	ND	6,770	2.9 ^a	291 ^a	293 ^a	301 ^a	79.6ª	411 ^a	1,920	18,200	<14	89.7	5.12 ^b
		2-4	8-6	ND	ND	4.53 ^a	7.15 ^a	ND	16,100	1.0	95.6	84.6	110	25.2	173	1,090	25,600	<13	93.2	6.91 ^b
NB-3	4/24/2002	4-6	6-4	ND	ND	3.64 ^a	3.63 ^a	ND	7,150	0.84	66.6	62.1	63.6	18.7	110	946	7,970	<13	96.6	6.52 ^b
		6-8	4-2	ND	ND	ND	ND	ND	ND	0.57	25.2	10.6	5.3	7.4	32.3	697	<500	<13	91.5	5.55 ^b
		8-10	2-0	ND	ND	ND	ND	ND	55.0	<0.56	8.5	7.5	3.7	6.8	22.5	648	<500	<14	89.0	6.29 ^b
		0-2	10-8	ND	ND	15.2ª	16.6ª	ND	23,700	0.55	291	322	341	99.9	590	2,070	47,700	<14	90.8	6.21 ^b
		2-4	8-6	ND	ND	1.16 ^a	0.574 ^a	ND	5,840	<0.68	51.0	84.9	75.7	21.4	106	7,410	5,160	<18	71.0	5.60 ^b
		4-6	6-4	ND	ND	12.5ª	11.5ª	ND	6,620	<0.54	97.7	85.5	87.9	25.7	154	1,040	9,890	<14	92.0	5.48 ^b
NB-4	4/24/2002	6-8	4-2	ND	ND	ND	ND	ND	ND	<0.52	8.3	6.6	2.7	5.9	21.9	891	<500	<13	93.5	5.12 ^b
		8-10	2-0	ND	ND	ND	ND	ND	1,530	<0.53	34.5	33.5	27.4	13.5	77.3	920	3,720	<14	90.3	6.22 ^b
																				U.LL
		0-2	10-8	ND	ND	14.2 ^a	10.2 ^a	ND	4,070	<0.56	280	278	307	67.5	448	826	38,800	<14	88.7	6.51 ^b
		2-4	8-6	ND	ND	0.157	ND	ND	2,420	<0.51	14.2	13.9	13.1	7.6	26.4	716	4,760	<13	96.8	5.87 ^b
NB-5	4/24/2002	4-6	6-4	ND	ND	0.497	ND	ND	5,230	<0.54	86.0	84.3	86.7	22.6	154	1,140	15,700	<13	93.2	7.99 ^b
	#2 #2002	6-8	4-2	ND	ND	ND	ND	ND	86.2	<0.60	13.6	24.5	7.2	7.7	54.4	1,480	<500	<15	82.3	6.56 ^b
		8-10	2-0	ND	ND	ND	ND	ND	2,070	<0.54	28.8	28.3	24.5	12.0	80.0	1,270	2,650	<14	85.9	6.84 ^b
		0-2	10-8	0.14	ND	0.509	0.367	ND	785	<0.65	39.2	54.3	46.3	16.1	78.7	1,120	2,800	<15	82.3	6.91 ^b
		2-4	8-6	ND	ND	0.262	ND	ND	3,610	<0.56	74.2	87.7	136	23.8	109	4,530	5,000	<15	83.3	6.87 ^b
NB-6	4/25/2002	4-6	6-4	ND	ND	ND	ND	ND	343	0.85	92.8	134	112	37.8	224	7,950	509	4.2	62.8	5.34 ^b
		6-8 8-10	4-2 2-0	ND ND	ND ND	ND ND	ND ND	ND ND	297 74.5	<0.53 <0.62	15.6 14.5	17.9 18.0	19.1 13.6	9.7 11.7	31.1 37.6	1,150 731	<500 <500	<2.8 <15	89.3 82.1	6.59 ^b
		8-10	∠-∪	ND	ND	ND	ND	ND	74.5	<0.02	14.5	18.0	13.0	11.7	37.0	/31	<5000	<10	8∠.1	6.59 ^b
		0-2	10-8	ND	ND	17.2	5.11	ND	14,800	0.78	238	349	273	58.6	478	2,490	29,200	16.5	85.4	6.46 ^b
		2-4	8-6	0.355	0.0921	8.96	14.1	ND	4,970	<0.68	30.4	42.8	29.5	23.8	83.7	2,960	8,260	<13	86.4	6.90 ^b
ND 7	4/05/0000	4-6	6-4	ND	ND	ND	ND	ND	5,480	<0.78	138	169	178	45.8	295	3,740	7,680	<17	70.8	7.03 ^b
NB-7	4/25/2002	6-8	4-2	ND	ND	ND	ND	ND	56.5	<1.1	38.8	18.6	16.7	26.6	80.0	9,180	584	<23	52.4	7.79 ^b
		8-10	2-0	ND	ND	0.341	ND	ND	958	<1.0	46.6	48.2	38.3	27.6	97.5	8,260	1,060	<23	53.7	7.66 ^b

Table B-2 Restricted Data Table North Landfarm History Soil Sampling Analytical Summary Hess Corporation- Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey

Sample Location	Sample Date	Sample Depth (ft)	Approximate Elevation Above mean sea level (msl) in feet	Benzene (CAS # 9072-35- 9)	Toluene (CAS # 108-88-3)	Ethylbenzene (CAS #100-41-4)	Total Xylenes (CAS # 1330-20-7)	Chlorobenzene (CAS # 108-90-7)	Total Petroleum Hydrocarbon Content (TPHC)	Cadmium (CAS # 7440-43- 9)	Chromium (CAS # 7440-47- 3)	Copper (CAS # 7440-50- 8)	Lead (CAS # 7439-92- 1)	Nickel (CAS # 7440-02- 0)	Zinc (CAS # 7440-66- 6)	Cation Exchange Capacity	Oil & Greese	Phenols (CAS # 108-95-2)	%solids %	(ns) Hd
	NRDCSCC			13	1,000	1,000	170,000	680	-	100		600	600	2,400	1,500	-	-	10,000	-	-
	RDCSCC			3	1,000	1,000	12,000	37	-	39		600	400	250	1,500	-	-	10,000	-	-
	IGWSCC			1	500	100	67	11	-							-	-	50	-	-
		0-2 2-4	10-8 8-6	3.88 0.542	0.528 0.115 J	51.5 14.3	20.6 20	ND ND	24,300 20,900	1.1 ^a <0.56	323 255	378 246	397 430	83.3 59.4	671 490	2,870 1,400	41,600 43,700	<14 <14	87.2 89.7	7.34 ^b
		2-4 4-6	6-4	0.542 2.96 ^a		32.2 ^a	30.5 ^a	ND ND	9,740	<0.56	109	124	141	34.2	289	1,400	43,700	<14	93.8	7.30 ^b 7.38 ^b
NB-8	4/25/2002	6-8	4-2	2.96 ND	3.86 ^a ND	32.2 ND	30.5 ND	ND	35.2	<0.55	7.0	10	3.8	6.1	18.5	831	<500	<13	90.4	7.38 5.85 ^b
		8-10	2-0	ND	ND	ND	ND	ND	ND	<0.58	9.5	8.9	3.7	9.2	25.9	627	<500	<14	85.7	6.07 ^b
		0.10		.,,,	,,,,					10.00	0.0	0.0	0.1	U.E	20.0	02.	1000	,,,,	00	0.07
		0-2	10-8	ND	ND	7.08 ^a	5.49 ^a	ND	28,700	< 0.56	305	307	381	73.6	540	2,480	42,500	<14	88.9	6.42 ^b
		2-4	8-6	3.05 ^a	ND	51.2ª	52.9 ^a	ND	12,700	<0.61	113	169	146	46.1	498	8,680	17,800	<16	76.3	6.87 ^b
NB-9	4/24/2002	4-6	6-4	ND	ND	20.8 ^a	25.4 ^a	ND	5.28	<0.61	204	259	302	86.6	488	3,480	27,600	<16	78.5	7.22 ^b
ND-9	4/24/2002	6-8	4-2	ND	ND	ND	ND	ND	ND	<0.54	10.1	12.5	10.5	7.5	25.0	900	<500	<14	89.1	6.72 ^b
		8-10	2-0	ND	ND	ND	ND	ND	509	<0.60	13.3	11.1	9.2	7.7	27.4	716	541	<14	85.2	6.25 ^b
		0-2	10-8	ND	ND	2.36 ^a	ND	ND	14,300	<0.56	229	230	236	61.9	361	2,170	32,200	<14	88.2	6.59 ^b
		2-4	8-6	ND	ND	0.466 ^a	0.54 ^a	ND	4,420	<0.55	48.1	53.8	43.4	18.8	109	900	7,240	<13	94.7	6.91 ^b
NB-10	4/24/2002	4-6	6-4	ND	ND	ND	ND	ND	4,760	<0.58	57.4	48.9	61.2	22.1	94.3	1,050	6,590	<14	90.1	7.11 ^b
		6-8	4-2	ND	ND	ND	ND	ND	37.8	<0.57	11.5	11.7	6.5	7.3	20.2	1,240	<500	<14	88.9	5.44 ^b
		8-10	2-0	ND	ND	ND	ND	ND	1,380	<0.53	22.0	26.5	16.0	9.0	35.2	888	2,710	<14	89.7	7.71 ^b
		0-2	10-8	0.0938 J	ND	2.09	0.47	NĎ	25,100	<0.60	9.7	10.8	6.0	9.0	24.6	2,980	30,300	<15	80.4	6.62 ^b
		2-4	8-6	ND	ND	0.534	ND	ND	462	<0.60	220	225	280	62.0	462	3,470	<500	<15	83.2	5.58 ^b
		4-6	6-4	0.181	ND	6.86	0.379	ND	3,380	<0.60	18.6	31.4	21.3	14.3	57.5	3,010	6,330	<15	83.5	5.76 ^b
NB-11	4/25/2002	6-8	4-2	ND	ND	ND	ND	ND	42.9	<0.63	8.2	8.3	4.7	6.4	19.1	1,040	1,160	<14	87.8	5.90 ^b
		8-10	2-0	ND	ND	ND	ND	ND	286	<0.55	16.6	16.0	16.9	9.8	34.9	997	942	<15	85.6	6.31 ^b
																				0.01
		0-2	10-8	ND	ND	1.78	ND	ND	17,000	< 0.69	231	199	265	54.8	365	2,610	43,300	<15	80.7	5.80 ^b
		2-4	8-6	ND	ND	2.34	0.574	ND	13,200	<0.62	97.5	110	136	31.3	176	1,960	14,800	<14	86.3	6.55 ^b
NB-12	4/25/2002	4-6	6-4	ND	ND	1.75	0.760	ND	3,020	<0.57	53.6	62.6	67.9	18.2	95.3	1,150	9,690	<14	87.4	6.44 ^b
		6-8	4-2	ND	ND	8.04 ^a	ND	ND	2,420	0.83	48.1	163	91.7	22.1	134	6,090	3,070	<18	69.3	7.48 ^b
		8-10	2-0	0.868 ^a J	ND	23ª	7.21 ^a	ND	2,000	2.2	95.9	362	219	36.0	280	9,420	3,120	<22	56.2	7.71 ^b
		0.0	40.0	NID	NID	0.00	0.050.1	NID	40.000	0.05	005	000	000	77.0	500	0.050	00.000	4.4	00.5	0.45
		0-2 2-4	10-8 8-6	ND ND	ND ND	2.68 ND	0.352 J ND	ND ND	12,900 ND	0.65 <0.53	265 10.0	269 11.3	320 10.0	77.2 7.7	500 23.1	3,050 1,880	22,200 <500	<14 <13	86.5 94.3	6.15 5.81 ^b
		2-4 4-6	6-4	ND	ND	0.176	ND ND	ND	7,690	<0.58	83.0	76.9	86.6	22.0	129	1,880	20,700	<14	94.3 86.8	6.30 ^b
NB-13	4/25/2002	6-8	4-2	ND	ND	ND	ND I	ND	241	<0.54	19.7	13.7	7.0	12.2	39.7	748	573	<14	90.9	6.62 ^b
		8-10	2-0	ND	ND	ND	ND ND	ND	3,200	<0.55	44.7	30.1	25.4	12.6	60.0	1,770	1,260	<14	89.9	6.66 ^b
		0.10		110	110	110	110	110	0,200	٦٥.٥٥	77.7	55.1	20.7	12.0	00.0	1,770	1,200	\17	00.0	0.00
		0-2	10-8	ND	ND	3.79 ^a	ND	ND	29,200	<0.52	304	269	299	70.5	448	982	51,600	<13	89.6	6.65 ^b
		2-4	8-6	ND	ND	6.89 ^a	4.54 ^a	ND	5,440	<0.53	49.9	44.8	51.0	15.6	124	952	10,300	<13	92.4	7.31 ^b
NB-14	4/24/2002	4-6	6-4	ND	ND	ND	ND	ND	7,330	<0.59	107	101	119	26.3	210	2,470	22,300	<14	85.5	6.83 ^b
IND-14	4/24/2002	6-8	4-2	ND	ND	ND	ND	ND	ND	<0.76	26.2	54.1	43.8	19.2	91.5	3,740	1,010	<19	64.8	7.45 ^b
		8-10	2-0	ND	ND	0.821	0.591	ND	2,180	<0.64	36.0	50.5	45.4	14.5	75.5	2,620	3,010	<15	79.1	7.07 ^b

Table B-2 Restricted Data Table North Landfarm History Soil Sampling Analytical Summary Hess Corporation- Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey

Sample Location	Sample Date	Sample Depth (ft)	Approximate Elevation Above mean sea level (msl) in feet	Benzene (CAS # 9072-35- 9)	Toluene (CAS # 108-88-3)	Ethylbenzene (CAS #100-41-4)	Total Xylenes (CAS # 1330-20-7)	Chlorobenzene (CAS # 108-90-7)	Total Petroleum Hydrocarbon Content (TPHC)	Cadmium (CAS # 7440-43- 9)	Chromium (CAS # 7440-47-	Copper (CAS # 7440-50- 8)	Lead (CAS # 7439-92-	Nickel (CAS # 7440-02- 0)	Zinc (CAS # 7440-66- 6)	Cation Exchange Capacity	Oil & Greese	Phenols (CAS # 108-95-2)	% Solids	(ns) Hd
	NRDCSCC			13	1,000	1,000	170,000	680	-	100		600	600	2,400	1,500	-	-	10,000	-	-
	RDCSCC			3	1,000	1,000	12,000	37	-	39		600	400	250	1,500	-	-	10,000	-	-
	IGWSCC			1	500	100	67	1	-			-				-	-	50	-	-
		0-2	10-8	ND	ND	14.5 ^a	23.3 ^a	ND	23,100	<0.60	296	248	281	65.5	446	2,300	42,700	<14	89.8	6.98 ^b
		2-4	8-6	ND	ND	5.08 ^a	8.86 ^a	ND	17,100	<0.74	184	190	187	74.9	291	4,530	30,600	<17	73.7	7.52 ^b
NB-15	4/24/2002	4-6	6-4	ND	ND	ND	ND	ND	3,260	<0.57	48.9	48.8	49.8	17.9	97.3	1,240	<500	<14	90.7	7.37 ^b
115 10	1/2 1/2002	6-8	4-2	ND	ND	ND	ND	ND	45.8	<0.62	8.1	12.6	6.6	7.1	24.1	943	<500	<14	86.8	6.68 ^b
		8-10	2-0	ND	ND	ND	ND	ND	53.6	<0.59	10.0	8.8	5.7	6.7	21.2	485	10,300	<15	82.7	5.99 ^b
		0-2	10-8	ND	ND	ND	ND	ND	286	<0.58	16.6	16.0	16.9	9.8	34.9	997	942	<14	87.5	6.31 ^b
		2-4	8-6	ND	ND	ND	ND	ND	561	<0.50	29.8	32.6	29.8	10.1	57.0	1,030	1,120	<13	93.0	5.39 ^b
NB-16	4/25/2002	4-6	6-4	ND	ND	ND	ND	ND	323	<0.56	18.2	16.3	9.9	8.8	36.5	1,130	656	<13	94.1	5.62 ^b
		6-8	4-2	ND	ND	ND	ND	ND	99.4	<0.55	7.6	11.2	4.7	6.0	16.7	580	<500	<14	87.0	5.51 ^b
		8-10	2-0	ND	ND	ND	ND	ND	79.1	<0.57	10.8	12.2	5.9	6.3	21.2	618	<500	<14	88.9	5.63 ^b
		0-2	10-8	ND	ND	0.641	0.382	ND	9,220	<0.57	138	117	142	36.1	228	1,830	18,300	<14	90.2	6.26 ^b
		2-4	8-6	ND	ND	ND	ND	ND	18.4	<0.55	11.0	6.6	5.3	6.4	20.3	717	<500	<13	93.1	5.12 ^b
		4-6	6-4	ND	ND	ND	ND	ND	1,880	<0.53	42.8	34.0	29.1	14.7	62.2	978	5,540	<14	90.0	5.87 ^b
NB-17	4/25/2002	6-8	4-2	ND	ND	ND	ND	ND	20.1	<0.53	9.2	7.2	3.0	6.3	25.1	807	561	<14	89.2	5.91 ^b
		8-10	2-0	ND	ND	ND	ND	ND	402	<0.60	21.1	17.1	14.1	9.5	36.6	650	739	<14	88.5	5.65 ^b
		0-2	10-8	ND	ND	ND	ND	ND	5,600	0.93	164	174	202	47.1	310	5,960	35,500	<16	78.8	5.99 ^b
		2-4	8-6	ND	ND	ND	ND	ND	88.9	< 0.60	23.3	41.0	31.4	16.7	61.5	3,470	<500	<15	82.5	7.97 ^b
NB-18	4/25/2002	4-6	6-4	ND	ND	0.903	0.734	ND	2,210	<0.62	54.1	55.3	46.9	21.2	89.0	5,690	2,940	<13	80.7	7.54 ^b
115 10	1/20/2002	6-8	4-2	ND	ND	ND	ND	ND	ND	<0.57	8.9	7.2	2.4	7.1	20.3	743	<500	<14	86.7	6.63 ^b
		8-10	2-0	ND	ND	ND	ND	ND	ND	<0.56	11.3	7.5	3.2	9.3	28.1	773	<500	<13	89.4	6.30 ^b
		0.0	40.0	0.450	ND	0.04	4.00	NID	45.000	0.50	057	000	005	57.0	440	4.500	40.000	4.4	00.4	h
		0-2	10-8	0.156	ND	2.21	1.09	ND	15,600	<0.53	257	229	305	57.3	412	1,590	49,000	<14	90.4	7.31 ^b
		2-4	8-6 6-4	ND	ND	6.00 ^a	7.64 ^a	ND	7,650	<0.55	47.6	43.4	43.3	12.3	91.5 227	804	8,620	<13	93.8	7.55 ^b
NB-19	4/25/2002	4-6 6-8	4-2	ND	ND ND	8.85 ^a	9.92 ^a	ND	11,300 51.9	1.2	151	126	134	36.5		1,800	16,800	<14	89.2	7.43 ^b
		8-10	2-0	ND ND	ND ND	ND ND	ND ND	ND ND	51.9	<0.62 1.0	19.5 40.0	36.8 122	17.0 76.1	16.3 24.9	73.6 127	1,190	<500 <500	<15 <19	81.9 66.9	5.24 ^b
		8-10	2-0	ND	ND	ND	ND	ND	511	1.0	40.0	122	76.1	24.9	127	6,330	<5000	<19	00.9	6.59 ^b
		0-2	10-8	ND	ND	3.17	5.06	ND	29,500	<0.54	292	225	344	53.9	427	1,980	44,300	<13	90.6	7.08 ^b
		2-4	8-6	ND	ND	ND	ND	ND	10,200	<0.59	106	100	109	30.5	198	2,120	13,600	<14	89.9	7.08 7.81 ^b
		4-6	6-4	ND	ND	1.65 ^a	2.45 ^a	ND	8,460	<0.58	60.1	77.3	56.3	23.1	117	4,050	13,700	<15	81.7	7.62 ^b
NB-20	4/24/2002	6-8	4-2	ND	ND	ND	ND	ND	65.5	<0.59	11.4	9.4	5.4	8.3	22.4	691	<500	<13	90.1	6.22 ^b
		8-10	2-0	ND	ND	ND.	ND	ND	20.3	<0.58	7.9	8.2	5.0	8.4	31.1	585	507	<14	87.3	5.75 ^b
		0.10	20	110	110	110	140	145	20.0	10.00	7.0	0.2	0.0	0.7	01.1	000	507	N1-7	07.0	5.75

Table B-2 Restricted Data Table North Landfarm History Soil Sampling Analytical Summary Hess Corporation- Port Reading Refinery 750 Cliff Road

Port Reading, Middlesex County, New Jersey

Sample Location	Sample Date	Sample Depth (ft)	Approximate Elevation Above mean sea level (msl) in feet	Benzene (CAS # 9072-35- 9)	Toluene (CAS # 108-88-3)	Ethylbenzene (CAS #100-41-4)	Total Xylenes (CAS # 1330-20-7)	Chlorobenzene (CAS # 108-90-7)	Total Petroleum Hydrocarbon Content (TPHC)	Cadmium (CAS # 7440-43- 9)	Chromium (CAS # 7440-47- 3)	Copper (CAS # 7440-50- 8)	Lead (CAS # 7439-92- 1)	Nickel (CAS # 7440-02- 0)	Zinc (CAS # 7440-66- 6)	Cation Exchange Capacity	Oil & Greese	Phenols (CAS # 108-95-2)	% solids %	(ns) Hd
	NRDCSCC			13	1,000	1,000	170,000	680	-	100			600	2,400	1,500	-	-	10,000	-	-
	RDCSCC			3	1,000	1,000	12,000	37	-	39		600	400	250	1,500	-	-	10,000	-	-
	IGWSCC			1	500	100	67	1	-							-	-	50	-	-
		0-2	11-9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		2-4	9-7	ND	ND	ND	ND	ND	45.8	<0.56	32.8	38.3	8.5	24.7	25.0	5,080	<500	<15	82.6	6.73 ^b
NBG-1	4/26/2002	4-6	7-5	ND	ND	ND	ND	ND	28.9	<0.57	21.8	36.6	5.7	24.3	38.0	3,210	<500	<15	87.8	6.59 ^b
		6-8	5-3	ND	ND	ND	ND	ND	15.9	<0.51	10.0	7.5	4.2	6.0	18.3	5,140	<500	<14	89.2	4.45 ^b
		8-10	3-1	ND	ND	ND	ND	ND	16.1	<0.55	8.3	6.3	3.6	7.8	29.5	936	<500	<13	94.2	6.34 ^b
		0-2	9-7	ND	ND	ND	ND	ND	20.1	<0.52	10.6	10.3	5.3	9.3	28.6	1.010	<500	<14	90.9	5.96 ^b
		2-4	7-5	ND	ND	ND	ND	ND	227	0.87	31.8	61.1	34.4	18.6	74.3	1,830	828	<14	80.5	7.42 ^b
		4-6	5-3	ND	ND	ND	ND	ND	31.1	<0.63	14.0	12.1	6.5	8.2	25.0	4,590	<500	<15	83.2	7.42 7.12 ^b
NBG-2	4/26/2002	6-8	3-1	ND	ND	ND	ND	ND	282	<0.58	14.9	21.3	10.6	9.3	33.8	10,500	<500	<15	81.5	7.57 ^b
		8-10	1- (-1)	ND	ND	0.132 J	ND	ND	369	0.69	30.9	111	63.3	17.3	95.7	5,800	538	<15	79.1	8.52 ^b
		0-2	9-7	ND	ND	ND	ND	ND	74.4	<0.66	19.9	36.0	47.4	16.8	101	11,100	<500	<15	82.4	4.46 ^b
		2-4	7-5	ND	ND	ND	ND	ND	33.4	<0.67	16.5	22.9	10.7	15.0	41.3	5,950	<500	<16	78.3	3.96 ^b
NBG-3	4/26/2002	4-6	5-3	ND	ND	ND	ND	ND	26.3	<0.67	38.6	19.4	16	10.2	39.2	8,800	<500	<16	77.8	4.71 ^b
		6-8	3-1	ND	ND	ND	ND	ND	61.2	<0.69	15.5	20.9	15.7	12.8	43.2	6,320	<500	<17	74.2	7.58 ^b
		8-10	1- (-1)	ND	ND	ND	ND	ND	45.0	<0.58	14.9	10.5	5.3	7.2	23.8	1,500	<500	<14	86.2	5.69 ^b
		0-2	12-10	ND	ND	ND	ND	ND	88.4	0.65	68.1	46.4	22.3	12.7	50.8	3,270	<500	<14	89.5	b
		2-4	10-8	ND	ND	ND	ND ND	ND	137	< 0.67	20.5	32.0	21.1	12.7	33.7	3,270	<500	<15	82.9	7.51 ^b 6.84 ^b
		4-6	8-6	ND	ND	ND	ND ND	ND	61.0	<0.67	14.9	28.5	17.3	11.7	39.0	3,350	<500	<14	88.5	6.84 6.98 ^b
NBG-4	4/26/2002	6-8	6-4	ND	ND	ND	ND 1	ND	94.8	0.68	45.2	38.1	11.8	10.7	43.3	6,650	1,000	<14	83	5.65 ^b
		8-10	4-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		0-2	11-9	ND	ND	ND	ND	ND	169	<0.58	15.0	22.3	12.7	8.3	26.7	3,690	529	<15	84.1	6.33 ^b
		2-4	9-7	ND	ND	ND	ND	ND	48.5	<0.56	11.9	24.1	11.5	8.8	27.3	2,610	<500	<14	88.1	6.06 ^b
NBG-5	10/8/2003	4-6	7-5	ND	ND	ND	ND	ND	87.9	<1.2	38.7	76.6	23.5	20.6	73.9	13,600	<500	<29	42.0	7.00 ^b
		6-8	5-3	ND	ND	ND	ND	ND	43.2	<0.57	7.0	7.0	6.4	6.1	23.5	2,330	<500	<14	85.8	7.00 ^b
		8-10	3-1	ND	ND	ND	ND	ND	34.4	<0.65	23.7	23.1	20.2	19.0	71.5	1,490	720	<16	75.2	5.99 ^b
-		0-2	9-7	ND	ND	ND	ND	ND	111	<0.58	22.5	47.0	39.7	15.7	75.2	3,410	510	<14	87.0	6.32 ^b
		2-4	7-5	ND	ND	ND	ND	ND	211	0.76	55.4	121	61.8	28.1	130	2,850	660	<16	76.5	8.01 ^b
		4-6	5-3	ND	ND.	ND	ND	ND	1,570	<0.57	8.1	14.7	8.6	6.1	17.1	998	2,380	<14	86.3	7.00 ^b
NBG-6	10/8/2003	6-8	3-1	ND	ND	ND	ND	ND	238	<0.58	7.8	8.6	6.5	5.7	17.4	864	595	<14	87.4	7.00 ^b
		8-10	1-(-1)	ND	ND	ND	ND	ND	46.7	<0.59	7.4	12.5	6.7	7.5	21.3	1,010	<500	<14	85.4	6.39 ^b
			. ,													,				0.00
		0-2	10-8	ND	ND	ND	ND	ND	46.8	<0.54	10.1	13.5	19.7	8.6	34.2	1,430	<500	<13	90.5	7.81 ^b
		2-4	8-6	ND	ND	ND	ND	ND	35.9	<0.58	10.8	11.9	5.7	11.2	34.2	1,630	<500	<15	83.9	5.43 ^b
NBG-7	10/8/2003	4-6	6-4	ND	ND	ND	ND	ND	245	1.4	47.5	114	54.9	24.6	114	2,370	<500	<16	80.0	7.90 ^b
	. 0, 0, 2000	6-8	4-2	ND	ND	ND	ND	ND	61.5	<0.60	10.9	20.2	9.1	8.4	33.6	1,360	<500	<15	83.1	7.67 ^b
		8-10	2-0	ND	ND	ND	ND	ND	214	0.84	41.1	156	91.1	22.6	138	2,960	581	<15	80.1	8.32 ^b

Notes:
All samples in mg/kg unless otherwise noted.

NRDCSCC - Non-Residential Direct Contact Soil Cleanup Criteria RDCSCC - Residential Direct Contact Soil Cleanup Criteria

IGWSCC- Impact to Ground Water Soil Cleanup Criteria (Default)

- Sample Above NRDCSCC

- Sample Above RDCSCCbut Below NRDCSCC

- Sample Above IGWSCC but Below NRDCSCC and RDCSCC

NA - Not Analyzed

NS - Not Sampled ND - Not Detected

J- Estimated Value

^a-Elevated Detection Limit due to dilution required for matrix interference

^b-Sample received and analyzed out of holding time for pH

B-2 Restricted Use Area Data Table Hess Corporation- Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey North Landfarm Soil Sampling Summary Table

Part	1						V	olatilo Orga	nice															ь	ase Neutral	•												
Part	Location	Date		above Mean Sea				Ethylbenzene (CAS # 100-41-4)	Toluene (CAS # 108-88-3)			"		Acenaphthylene (CAS # 208-96-8)		ш	Benzo(a)pyrene (CAS # 50-32-8)	Benzo(b)fluoranthene (CAS # 205-99-2)	Benzo(g,h,i)perylene (CAS #191-24-2)		ă			Dibenz(a,h)anthracene (CAS # 53-70-8)	Dibenzofuran (CAS # 132-64-9)	1,2- Dichlorobenzene (CAS # 95-50-1)						Indeno(1,2,3-cd)pyrene (CAS # 193-39-5)	ò				1,2	Total TIC, Semi-Volatile
The late						13 3	-	-,,	.,	-,,	-				,	-	0.66	0.9	-						-	,	4					0.9		-,		,	-,	
				-		1	-				-			-					-			-			-		10						-		-			
	NB-21	4/24/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND ND	0.215 ND ND ND	ND ND ND	ND ND 0.0496 J ND	ND ND ND	ND 0.079 J ND	8.79 (10) J ND ND ND	ND ND ND ND	0.0255 J ND ND ND	0.023 J ND ND ND	0.0958 ND 0.0222 J ND	0.106 ND 0.0431 J ND	0.0974 ND 0.0442 J	0.0865 ND 0.0367 J	0.0657 J ND 0.0287 J ND	0.0654 J ND 0.0312 J ND	ND ND ND	ND ND ND ND	0.145 ND 0.0426 J ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	0.306 ND ND ND	0.248 ND 0.0783	0.0191 J ND ND ND	0.0539 J ND 0.0295 J ND	0.0681 J ND ND ND	0.0267 J ND ND ND	0.0455 J ND 0.0784 ND	0.266 ND 0.0793	ND ND ND	4.55 (17) J 9.09 (3) J 3.27 (2) J 11.01 (3) J
Part	NB-22	4/24/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND	ND ND ND ND	ND ND ND	15.9 ^b ND ND ND	ND ND ND	20.9 ^b ND ND ND	537 (10) J 3.0 (10) J ND ND	0.230 ND ND ND	1.27 ^d 0.0208 J ND ND	ND ND ND	1.83 ^d J ND ND ND	0.178 ND ND ND	ND ND	ND ND ND	0.0985 ND ND ND	0.0414 J ND ND ND	0.0591 J ND ND ND	ND ND ND	0.545 ND ND ND	0.0338 J ND ND ND	0.564 ND ND ND	0.0676 J ND ND ND	ND ND ND ND	ND ND ND ND	0.368 ND ND ND	ND ND ND	2.11 0.0454 J ND ND	0.0485 J ND ND ND	95.9 ^d 0.170 ND ND	29.2 ^d ND ND ND	40.5 ^d 0.131 ND ND	ND ND ND	ND ND ND	43.6 (25) J 15.33 (25) J 1.95 (3) J 1.03 (6) J
Maria Mari	NB-23	4/24/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND ND	ND ND 0.0437 J ND	ND ND ND ND	0.0359 J ND 2.26 ND	ND ND 0.0556 ND	0.0337 J ND 2.13 ND	40.2 (10) J ND 119.3 (10) J ND	ND ND ND ND	0.404 0.666 ND 0.0397 J	0.105 ND ND ND	0.132 0.189 J ND 0.0173 J	0.578 J 0.140 J ND ND	0.0323 J 0.0819 J ND ND	0.0257 J 0.939 J ND ND	0.0332 J ND ND ND	ND ND ND	0.0879 ND ND ND	ND ND ND	0.102 0.322 J ND 0.0251 J	ND ND ND	0.276 0.426 ND 0.0269 J	ND ND ND ND	0.321 ^d J ND ND ND	ND ND ND ND	0.284 0.570 ND 0.0535 J	0.155 0.236 J ND 0.0193 J	1.23 1.71 ND 0.116	ND ND ND	5.59 ^d 9.32 ND 0.418	1.13 3.16 ND 0.890	2.54 4.30 ND 0.306	0.129 0.62 ND 0.0478 J	ND ND ND ND	115.4 (25) J 221.5 (25) J 0.610 (1) J 17.92 (25) J
Part	NB-24	4/24/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	0.0709 J ND ND ND	0.0319J ND ND ND 0.048J	0.0157 J ND ND 0.0684 J	0.017J ND 0.0265J 0.230	ND ND ND 0.172	ND ND ND 0.170	ND ND ND 0.0427 J	ND ND ND 0.179	ND ND ND	ND ND ND ND	0.0334 J ND 0.291 J 0.198	ND ND ND 0.0755 J	0.0519 J ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	0.223 ND ND 0.151	0.0189 J ND 0.0388 J 0.589	0.21 ND ND ND	ND ND ND 0.0413 J	0.943 ND ND ND	0.302 J ND ND ND 0.0251 J	0.494 ND ND ND	0.0583 J ND 0.0717 J 0.0458 J	ND ND ND 0.503	33.82 (25) J ND 0.92 (2) J 101.9 (25) J
March Marc	NB-25	4/24/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND 0.367 J ND ND	ND ND ND	0.0501J ND ND ND	0.131 ND ND ND	ND ND ND ND	0.0399J ND ND ND	56.9 (10) J ND ND ND	ND ND ND ND	4.26 ND ND 0.0433J	ND 0.0305 J ND ND	3.06 0.0513 J 0.0285 J ND	0.887 0.0733 J 0.0489 J	0.472 0.0751 J 0.0347 J ND	1.28 0.193 ND ND	ND 0.0678 J 0.0285 J ND	ND 0.0631 J ND ND	ND ND ND	ND ND ND	1.9 0.0747 J	ND 0.0965 J ND ND	ND 0.326 J ND	ND ND ND	ND ND ND ND	ND ND ND ND	4.04 ND 0.0823 ND	1.68 0.208	8.12 0.0208 J	ND 0.0581 J 0.0243 J ND	95.1 ^d ND ND 0.558	38.7 ^d ND ND 0.174	21.0 ^d 0.0893 J ND	2.88 ^d 0.171	ND ND	431 (25) J 41.44 (7) J 2.34 (10) J 23.32 (25) J
Marchan Marc	NB-26	4/26/2006	2-4 4-6 6-8 8-10	(9-7) (7-5) (5-3) (3-1)	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND	ND ND ND	ND ND	ND ND ND	ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	0.0157 J ND ND	ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND	2.33° 0.017 J 0.168 J ND ND	ND	1.35 (4) J 1.45 (4) J ND 0.180 (1) J
1	NB-27	4/26/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND ND	ND ND ND ND	ND ND ND	ND 15.9 0.065 J ND	ND ND ND	ND 7.23 ND ND	ND 540 (10) J 52.1 (10) J ND	ND ND ND ND	ND 5.49 0.826 ND	ND ND ND ND	ND 2.06 ND ND	ND 1.19 J 0.134 J ND	0.764 J 0.0692 J ND	ND	ND ND ND	ND ND ND ND	ND ND	ND ND ND	0.247 J ND	ND ND	3.36 0.591 ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND 2.49 0.604 ND	ND 1.79 J 0.192 J ND	15.4 2.29 0.0287 J	ND ND ND	ND 62.6 22.3 ^d 0.0764	ND 24.7 5.69 ND	36.9 4.77 0.0676 J	0.363 ND	ND ND	390 (1) J 1,996 (25) J 323.4 (25) J 2.74 (12) J
NGRID-1 4/26/2006	NB-28	4/26/2006	2-4 4-6 6-8 8-10	(8-6) (6-4) (4-2) (2-0)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND 0.139 ND ND	0.0441 J 0.00544 J ND ND	ND ND ND ND	ND 0.0198 J	ND ND ND	ND 0.0331 J ND ND	ND	ND 0.0408 J 0.0204 J ND		ND	0.150 (1) J 1.59 (5) J 0.9 (3) J 0.29 (1) J
NBGRO-2 NBGRO-	NBGRD-1	4/26/2006	2-4 4-6 6-8 8-10	(9-7) (7-5) (5-3) (3-1)	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND	ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND	ND ND ND	ND ND ND
NGRO-1 A 642000	NBGRD-2	4/26/2006	2-4 4-6 6-8 8-10	(6-4) (4-2) (2-0) (0-(-2)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND 0.380 (1) J	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND 0.0327 ND 0.159	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	0.97 (1) J ND 1.2 (1) J 1.01 (2) J
NBGRL- A A A B A B B B B	NBGRD-3	4/26/2006	2-4 4-6 6-8	(7-5) (5-3) (3-1)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 0.102 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	0.49 (1) J ND 1.91 (1) J
Negro Fig. Negro	NBGRD-4	4/26/2006	2-4 4-6 6-8	(8-6) (6-4) (4-2)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 0.198 J ND	ND ND ND	3.16 (3) J 0.79 (2) J ND
NBGRD-6 4 (26/2006 4-6 (7-5) ND	NBGRD-5	4/26/2006	2-4 4-6 6-8 8-10	(7-5) (5-3) (3-1) (1-(-1)	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	0.0382 J ND ND ND	0.0341 J ND ND ND	0.029 J ND ND ND	ND ND ND ND	0.043 J ND ND ND	ND ND ND	ND ND ND ND	0.397 J ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	0.232 ND ND ND	0.0982 ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	0.139 0.0236 J ND ND	ND ND ND ND	0.61 (3) J ND ND ND
NBGRD-7 4/26/2006 6-8 (5-3) ND	NBGRD-6	4/26/2006	2-4 4-6 6-8 8-10	(9-7) (7-5) (5-3) (3-1)	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
	NBGRD-7	4/26/2006	2-4 4-6 6-8	(9-7) (7-5) (5-3)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	0.49 (2) J ND 5.3 (3) J

IGWSCC= Default Impact to Groundwater Soil Screening Level RDCSCC= Residential Direct Contact Soil Remediation Standard NRDCSCC: Non-Residential Direct Soil Remediation Standard All Results in mg/kg unless otherwise noted

ND= Non Detect NA= Not Applicable NR= Not Reported J- Represents Estimated Concentration

Sample Above NRDCSCC
 Sample Above RDCSCC but Below NRDCSCC
 Sample Above IGWSCC but Below NRDCSCC and RDCSCC
 Method Detection Limit Greater then IGWSCC

a- Analyzed outside of holding time
 b- Dilution required due to Matrix Interference
 c- Elevated detection limit due to dilution required for high interfering element.
 d- Result is from 2nd Run or 2nd Peak

B-2 Restricted Use Area Data Table Hess Corporation-Port Reading Refinery 730 Cliff Road Port Reading, Middlesex County, New Jersey North Landfarm Soil Sampling Summary Table

				Ger	neral		_											Metals	g Summary											PCBs		Pestic	ides	$\overline{}$
Sample Location	Sample Date	e Sample Depth	Solids, Percent	_e (ns) Hd	Ammonia (CAS # 7664-41-7)	Cyanide (CAS #74-90-8)	Aluminum (CAS #7249-90-5)	Antimony (CAS # 7440-36-0)	Arsenic (CAS #7440-38-2)	Barium (CAS #7440-39-3)	Beryllium (CAS # 7440-41-7)	Cadmium (CAS # 7440-43-9)	Calcium (CAS # 7440-47-3)	Chromium (CAS # 7440-47-3)	Cobalt (CAS # 7440-48-4)	Copper (CAS #7440-50-8)	Iron (CAS # 7439-89-6)	Lead (CAS # 7439-92-1)	Magnesium (CAS #7439-95-4)	Manganese (CAS # 7439-96-5)	Mercury (CAS #7439-97-6)	Nickel (CAS # 7440-02-0)	Potassium (CAS # 7440-09-7)	Selenium (CAS # 7782-49-2)	Silver (CAS # 7440-22-4)	Sodium (CAS # 7440-23-5)	Thallium (CAS # 7440-28-0)	Vanadium (CAS # 7440-62-2)	Zinc (CAS # 7440-66-6)	Aroclor 1254 (CAS # 11097-69-1)	4,4'-DDD (CAS # 72-54-8)	4,4'-DDE (CAS # 72-55-9)	4,4'-DDT (CAS#50-29-3)	Heptachlor Epoxide (CAS # 1024-57-3)
	NRDCSCO	:			-	21,000		340	20	47,000	2	100	-	-		600	-	600	-	-	270	2,400		3,100	4.100		2	7,100	1,500	2	12	9	8	
	RDCSCC				-	1,100	-	14	20	700	2	39	-	-	-	600	-	400	-	-	14	250		63	110		2	370	1,500	0.49	3	2	2	
	IGWSCC	1 02	90.8	7 22	14.5	 <0.25	2 200	<2.2	10.0	99.3	<0.55	 <0.55	1,700	177	7.4	140	56,500	165	1.000	360	2.1	63.2	641	<2.2		 <550	<1.1	16.4	256	50 0.630	50 ND	50 ND	500 ND	ND
NB-21	4/24/200	0-2 2-4 06 4-6 6-8	83.1 83.3 86.5	7.33 7.60 5.97 5.77	25.8 2.0 1.5	<0.25 <0.28 <0.27 <0.28	3,300 5,510 3,710 4,720	<2.3 <2.5 <2.3	10.8 5.8 3.3 5.3	32.6 <25 <23	<0.58 <0.62 <0.57	<0.55 <0.58 <0.67 <0.57	<580 <620 <570	177 15.1 9.2 10.2	7.9 <6.2 <5.7	20.4 6.1 9.8	18,600 11,800 13,100	8.4 4.1 5.1	1,060 1,920 1,260 1,530	102 55.8 62.3	0.15 <0.035 <0.034	15.8 6.6 9.7	1,510 1,120 1,410	<2.3 <2.5 <2.3	<1.1 <1.2 <1.2 <1.1	<580 <620 <570	<1.2 <1.1 <1.1	18.8 13.9 15.5	40.2 18.0 31.7	ND ND ND	0.0062 ND 0.0029	0.0141 ND ND	ND ND ND	ND ND ND
		8-10	88.4	5.67	1.6	<0.26	4,350	<2.3	5.9	<23	< 0.57	<0.57	<570	12.6	<5.7	9.9	14,000	5.6	1,530	63.2	< 0.034	10.5	1,260	<2.3	<1.1	<570	<1.1	17.7	32.1	ND	0.0026	ND	ND	ND
		0-2 2-4	84.0 90.1	7.67 7.21	29.5 40.3	0.61 <0.25	7,630 5,500	<2.4 <2.2	16.0 21.3	106 179	<0.60 <0.55	<0.60	953 2,480	67.6 288	9.6 13.8	79.7 264	40,800 115,000	60.4 292	2,600 1,770	246 745	0.95 1.6	22.8 62.2	1,840 1,160	<2.4 3.8	<1.2 1.2	<600 <550	<1.2 <1.1	28.7 28.1	122 469	0.129 0.659	0.0086 ND	0.0207 ND	ND ND	0.0062 ND
NB-22	4/24/200	6 4-6	87.7	7.08	6.6	< 0.25	4,840	<2.3	3.4	<23	<0.58	<0.58	<580	10.6	<5.8	13.1	12,500	5.6	1,650	67.2	< 0.034	10.4	1,250	<2.3	<1.2	<580	<1.2	13.8	28.0	ND	ND	ND	ND	ND
		6-8 8-10	86.4 86.3	5.36 5.93	3.4 2.6	<0.26 <0.27	3,840 4,080	<2.3 <2.3	4.3 4.8	<23 <23	<0.57 <0.57	<0.57 <0.57	<570 <570	7.9 11.3	<5.7 <5.7	11.3 10.9	9,760 12,400	5.7 5.2	1,110 1,190	52.8 58.8	<0.035 <0.034	7.7 9.0	1,010	<2.3 <2.3	<1.1 <1.1	<570 <570	<1.1 <1.1	11.0 16.7	22.6 27.6	ND ND	ND 0.0034 ^b	ND ND	ND ND	ND ND
		0-10	89.1	6.53	34.7	<0.27	5,150	<4.5°	25.1	273	<1.1°	2.1°	3,350	341	19.0°	397	170,000	774°	2,180	1,580°	2.1	113	969	6.9°	<1.1	<1,100°	<2.2°	33.0°	617	0.793	ND	ND	ND	ND
		2-4	94.9	6.88	10.2	<0.24	4,280	<2.0	4.3	<20	< 0.51	<0.51	<550	9.6	<5.1	10.7	14,200	5.4	1,420	65.8	< 0.035	6.2	1,380	<2.0	<1.0	<510	<1.0	15.1	20.6	0.0432	0.0025	ND	0.0026	ND
NB-23	4/24/200	6-8 6-8	86.4 89.1	6.63 5.83	22.6 11.4	<0.24 <0.26	5,220 4,870	<2.3 <2.3	6.2 5.0	35.3 <23	<0.57 <0.57	<0.57 <0.57	<570 <570	42.0 14.3	<5.7 <5.7	45.7 11.8	25,700 14,100	41.6 7.4	1,800 1,610	169 65.7	0.41 <0.035	15.4 7.1	1,510 1,510	<2.3 <2.3	<1.1 <1.1	<570 <570	<1.1 <1.1	17.8 16.2	77.8 19.9	0.204 ND	0.0039 0.0022	ND ND	0.0086 ND	ND ND
		8-10	85.1	6.21	7.7	<0.27	4,510	<2.3	4.6	<23	<0.58	<0.57	<580	17.3	<5.8	17.8	14,100	12.6	1,540	83.0	<0.035	8.8	1,290	<2.3	<1.2	<580	<1.2	14.3	38.6	ND	0.0024	0.0017	ND	ND
		0-2	88.3	6.79	72.2	< 0.25	5,510	<2.2	20.2	162	<0.56	1.5	2,040	265	11.7	269	104,000	281	1,700	682	1.6	58.3	1,200	3.9	1.1	<560	<1.1	28.0	407	0.671	ND	ND	ND	ND
NB-24	4/24/200	2-4	95.7 86.1	6.54 6.05	39.8 6.3	<0.24 <0.26	3,590 4,350	<2.0 <2.3	4.1	<20 <23	<0.51 <0.58	<0.51 <0.58	<510 <580	8.6 10.8	<5.1 <5.8	11.3 8.5	13,900 13,100	5.1 5.5	1,220	58.6 64.5	0.033	6.4 7.1	1,220 1,340	<2.0 <2.3	<1.0 <1.2	<510 <580	<1.0 <1.2	15.4 12.0	22.4 20.5	ND ND	0.0018 0.0043	ND 0.0024	0.0016 ND	ND ND
		6-8	68.9	6.70	9.5	<0.33	9,330	<2.9	12.7	45.5	<0.73	<0.73	<730	23.6	8.2	50.5	21,700	20.9	2,420	157	<0.049	16.5	1,960	<2.9	<1.5	<730	<1.5	26.3	52.5	ND	0.0174	0.0024	0.0154	ND
		8-10	84.9	7.06	9.1 9.3	<0.28	11,300	<2.4	27.4	70.8	<0.59	0.64	1,430	47.0	8.5	128	24,200 101,000	69.0 340	3,620	192	0.043	22.7 69.3	2,090	3.0	<1.2	<590	<1.2	33.4	112	ND 0.770	0.0244	0.0627	ND ND	ND
		0-2 2-4	87.8 90.6	6.52 6.92	28.6	<0.26 0.76	5,130 14,100	<2.3 <2.2	18.2 27.5	213 104	0.58 <0.55	0.93 <0.55	2,600 2,800	380 61.5	12.9 9.9	317 116	28,100	97.4	1,460 4,260	534 177	0.16	27.6	924 2,330	7.7 4.5	<1.1 <1.1	<570 <550	<2.3 ^b <1.1	43.6 47.2	506 71.7	0.770 0.136	ND 0.0077	ND ND	0.0074	ND ND
NB-25	4/24/200	6 4-6	65.9	6.33	27.6	< 0.34	19,200	<3.0	47.6	100	0.84	0.96	1,990	49.3	12.8	194	41,200	82.0	5,240	368	1.2	35.6	3,910	6.5	<1.5	<760	<1.5	47.1	205	ND	ND	ND	ND	ND
		6-8 8-10	87.5	5.65 5.57	6.7 4.6	0.42 <0.28	6,230 6,330	<2.3 <2.3	8.7	28.1	<0.57 <0.58	<0.57 <0.58	<570 <580	17.7 15.9	<5.7 <5.8	38.2 12.5	27,600	8.1 7.1	2,650 2,840	96.3	<0.036 0.063	11.5 11.9	2,020	<2.3 <2.3	<1.1	<570 <580	<1.1 <1.2	21.4 18.5	35.6 36.8	ND ND	0.218 ^d 0.0067	0.0372	ND ND	ND ND
		0-2	86.6 88.3	6.61	4.6	<0.28	5,680	<2.5	3.4 14.2	<23 134	<0.62	<0.62	1,880	162	9.6	189	17,000 82,700	199	1,990	72.2 619	1.2	46.7	995	3.5	<1.1 <1.2	<620	<1.2	28.0	287	0.323	0.0067 ND	0.0046 ND	ND ND	ND ND
ND 00	41001000	2-4	92.8	5.41	15.6	0.27	5,510	<2.1	6.9	21.8	0.92	< 0.53	<530	22.5	<5.3	37.2	23,600	12.3	1,260	104	0.058	10.0	1,240	<2.1	<1.1	<530	<1.1	29.5	32.6	ND	0.0062	ND	ND	ND
NB-26	4/26/200	6-8 6-8	87.4 88.8	5.28 6.27	22.7 9.6	<0.27 <0.26	11,100 6,150	<2.4 <2.2	17.8 4.8	35.4 <22	1.0 <0.55	<0.60 <0.55	<600 <550	112	<6.0 <5.5	22.9 10	52,900 25.100	22.9 6.1	2,290 3,120	85.5 122	0.23 <0.036	12.0 12.2	2,700	<2.4 <2.2	<1.2 <1.1	<600 <550	<1.2 <1.1	80.5 28.7	49.1 40.5	ND ND	0.0195 ND	0.0035 ND	ND ND	ND ND
		8-10	87.8	6.12	5.1	<0.26	3,770	<2.5	3.3	<25	<0.62	<0.62	<620	8.9	<6.2	7.1	15,000	4.6	1,100	49.0	<0.034	5.0	1,080	<2.5	<1.2	<620	<1.2	13.6	18.0	ND	0.0095	ND	ND	ND
		0-2 2-4	89.1 82.9	5.39 5.01	4.0 ND	<0.25 <0.29	3,520 5,650	<2.4 <2.3	3.2 4.3	<24 <23	<0.60 <0.58	<0.60 <0.58	<600 <580	7.2 11.8	<6.0 <5.8	7.2 12.3	13,800	3.9 4.9	1,030 1,690	70.3 87.9	<0.037 <0.040	4.9 8.3	985 1,580	<2.4 <2.3	<1.2 <1.2	<600 <580	<1.2 <1.2	16.0 17.8	16.9 26.6	ND ND	ND ND	ND ND	ND ND	ND ND
NB-27	4/26/200		91.7	5.76	36.5	<0.29	6,350	<4.3 ^b	19.9	177	<1.1 ^b	<1.1	2,410	289	16.2 ^b	303	138,000	330 ^b	2,300	906	2.1	77.8	1,320	5.9 ^b	<1.1	<1.100 ^b	<2.1 ^b	30.9 ^b	448	0.642	ND	ND	ND	ND
		6-8	96.4	6.47	11.3	<0.24	3,750	<2.11	5.9	<21	< 0.53	<0.53	<530	21.5	<5.3	17.7	24,700	12.4	1,130	109	0.036	13.1	1,210	<2.1	<1.1	<530	<1.1	16.9	25.8	0.1	ND	ND	ND	ND
		8-10 0-2	89.0 94.1	5.41 5.87	1.7 11.1	<0.26 <0.26	4,680 5,170	<2.5 <2.1	2.9 6.2	<25 21.7	<0.62 <0.52	<0.62 <0.52	<620 <520	11.7 13.0	<6.2 <5.2	9.5 17.6	15,300 20,700	4.8 8.3	1,300	64.1 81.8	<0.034 0.055	7.8 9.1	1,240 1,390	<2.5 <2.1	<1.2 <1.0	<620 <520	<1.2 <1.0	15.7 19.5	27.6 35.6	ND ND	ND ND	ND	ND ND	ND ND
		2-4	97	5.59	9.5	< 0.23	3,910	<2.0	3.5	<20	<0.49	<0.49	<490	9.7	<4.9	6.9	14,300	3.9	1,330	70.8	<0.031	5.5	1,290	<2.0	<0.98	<490	<0.98	14.2	17.2	ND	ND	0.0045°	ND	ND
NB-28	4/26/200		91.4	6.02	7.0	<0.25	3,670	<2.2	3.0	<22	<0.54 <0.59	< 0.54	<540 <590	12.6 8.4	<5.4	13.4	15,700	9.4	1,330	93.1	< 0.035	7.1	1,050	<2.2	<1.1	<540	<1.1	12.2	24.0 17.8	ND	ND	ND	ND	ND
		6-8 8-10	83.6 87.0	5.49 5.80	2.3 3.7	<0.28 <0.27	3,660 3,490	<2.4 <2.3	<2.4 <2.3	<24 <23	< 0.59	<0.59 <0.57	<570	8.0	<5.7	6.4	9,960	3.2	1,040	59.5	<0.037 <0.036	5.8 6.2	992 945	<2.4 <2.3	<1.2 <1.1	<590 <570	<1.2 <1.1	9.1 9.6	15.8	ND ND	ND ND	ND ND	ND ND	ND ND
		0-2	92.7	5.48	8.5	<0.24	5,870	<2.2	5.0	30.3	< 0.54	<0.54	582	15.9	<5.4	15.9	19,200	10.9	2,390	101	0.092	10.3	1,530	<2.2	<1.1	<540	<1.1	18.4	30.1	ND	0.0222	0.0044	0.0032	ND
NBGRD-1	4/26/200	2-4 16 4-6	95.3 95.2	4.40 5.21	11.8 4.5	<0.25 <0.24	7,390 3,520	<2.1 <2.1	6.6 3.7	22.4 <21	<0.52 <0.52	<0.52 <0.52	<520 <520	15.0 10.2	<5.2 <5.2	13.4 8.3	20,600 15.300	8.2 4.2	1,510 1,280	67.1 58.2	<0.034 <0.033	9.0 6.0	1,390 1,120	<2.1 <2.1	<1.0 <1.0	<520 <520	<1.0 <1.0	21.9 14.7	24.0 20.2	ND ND	0.0095 ND	0.002 ND	0.004 ND	ND ND
		6-8	88.1	6.28	4.0	<0.27	5,030	<2.3	20.7	<23	1.0	<0.57	<570	15.6	<5.7	12.6	75,400	5.1	1,910	382	< 0.037	10.3	842	3.6	<1.1	<570	<1.1	41.2	34.2	ND	ND	ND	ND	ND
-		8-10 0-2	86.4 81.7	6.24 7.60	4.5 26.1	<0.28 <0.27	4,130 10,600	<2.3 <2.5	3.2 20.9	<23 122	<0.58 0.64	<0.58	<580 1.130	8.8 46.2	<5.8 11.7	8.2 91.3	16,100 39,500	3.2 44.1	1,390 3,810	81.9 238	<0.038 0.73	8.3 23.0	995 2,370	<2.3 <2.5	<1.2 <1.2	<580 <610	<1.2 <1.2	14.0 39.1	23.3 98.7	ND 0.103	ND 0.0091	ND 0.03	ND ND	ND ND
		2-4	87.4	7.77	5.1	< 0.26	4,260	<2.3	5.0	<23	< 0.57	<0.57	<570	11.9	<5.7	14.0	14,500	7.0	1,430	80.3	< 0.037	8.0	1,070	<2.3	<1.1	<570	<1.1	13.7	26.5	ND	0.0036	ND	ND	ND
NBGRD-2	4/26/200	6-8 6-8	84.0 91.4	6.33 6.81	2.3 5.1	<0.26 <0.26	4,330 5,420	<2.4 <2.4	5.3 3.0	<24 24.0	<0.61	<0.61	<610	13.4	<6.1 <5.9	15.5 8.8	19,200 15,800	8.4 4.6	1,480 2,630	80.9 85.6	0.045 <0.036	7.6 8.6	1,270 1,910	<2.4 <2.4	<1.2 <1.2	<610 <590	<1.2 <1.2	21.3 18.0	26.0 27.7	ND ND	ND 0.0049	0.0024 ND	0.0023 ND	ND ND
		8-10	90.0	5.94	3.6	<0.26	4,600	<2.2	5.7	<22	<0.55	<0.55	<550	22.2	5.8	18.3	27,700	14.0	1,580	130	0.037	12.0	1,350	<2.2	<1.1	<550	<1.1	37.5	ND	ND	ND	0.003 ^d	0.0018	ND
		0-2	82.9	5.56	7.2	<0.28	6,910	<2.4	7.4	<24	<0.61	<0.61	749	17.0	<6.1	19.9	18,100	11.4	2,380	147	0.39	12.0	1,450	<2.4	<1.2	<610	<1.2	20.4	38.8	ND	ND	0.002 ^d	ND	ND
NBGRD-3	4/26/200	2-4	89.2 89.3	5.07 5.91	3.9 3.1	<0.26 <0.25	3,000 2,540	<2.2 <2.1	5.1 2.6	<22 <21	<0.54 <0.52	<0.54 <0.52	<540 <520	10.2 8.1	<5.4 <5.2	6.9 7.7	16,700 8,540	2.9 6.1	1,090 926	71.3 40.0	<0.036 <0.035	6.1 <4.2	624 596	<2.2 <2.1	<1.1 <1.0	<540 <520	<1.1 <1.0	13.9 8.0	20.3 12.8	ND ND	ND 0.002 ^d	ND ND	ND 0.002	ND ND
		6-8	66.8	6.48	49.7	<0.35	11,100	<2.8	11.3	33.0	<0.69	<0.69	1,340	25.8	7.5	23.5	28,400	19.8	4,140	233	0.11	18.4	2,320	<2.8	<1.4	<690	<11.4	30.1	57.3	ND	0.002 ^d	0.0068 ^d	ND	ND
		8-10	92.3	7.90	<1.3	<0.25	3,330	<2.2	5.5	<2.2	< 0.56	< 0.56	791	11.4	< 5.6	15.8	15,200	15.5	1,140	71.8	< 0.035	6.9	797	<2.2	<1.1	<560	<1.1	14.8	25.1	ND	ND	ND	0.0017	ND
		0-2 2-4	84.8 53.8	6.31 5.47	22.7 5.8	<0.27 <0.42	9,560 24,400	<2.4 <3.7	11.4 17.3	57.8 47.2	<0.60	<0.60 <0.93	<600 <930	19.1 42.7	6.2 20.0	30.8 29.6	31,200 41,700	17.2 53.6	2,960 5.370	176 501	0.22	14.1 40.2	1,470 4.010	<2.4	<1.2 <1.9	<600 <930	<1.2 <1.9	32.9 55.7	39.2 181	ND ND	0.0164 ^d ND	0.0051 ND	ND ND	ND ND
NBGRD-4	4/26/200		83.7	5.99	39.5	<0.28	5,330	<2.3	7.3	27.9	<0.56	<0.56	<560	13.0	<5.6	32.4	15,700	11.4	1,650	85.5	0.19	10.5	1,040	<2.3	<1.1	<560	<1.1	17.5	32.5	ND	ND	0.0124 ^d	ND	ND
		6-8	89.2	5.80	6.4	<0.25	2,640	<2.1	3.7	<21	<0.53	<0.53	<530 <506	10.3	<5.3	7.8	15,100	3.3	937	61.5	<0.037	5.4	542	<2.1	<1.1	<530	<1.1	15.1	21.7	ND	ND	ND	ND	ND
		8-10 0-2	85.3 88.5	5.89 5.58	8.5 <1.4	<0.26 <0.26	3,030 2,540	<2.4 <2.3	4.7 9.2	<24 <23	<0.59 <0.58	<0.59 <0.58	<596 <580	13.2 9.2	<5.9 <5.8	6.6 9.2	16,900 23,000	3.3 6.9	943 829	54.8 103	<0.039 <0.037	6.1 8.1	706 <580	<2.4 <2.3		<590 <580	<1.2 <1.2	16.3 21.9	24.4 31.3	ND ND	ND ND	ND ND	ND ND	ND ND
NBGRD-5	1/26/200	2-4	80.6	6.70	3.6	<0.28	5,540	<2.6	11.6	56.1	< 0.64	< 0.64	<640	22.8	8.0	38.0	25,300 14,800	17.9	2,090	154	0.27	14.2	1,100	<2.6	<1.3	<640	<1.3	21.6	53.1	0.133	0.0038	0.0088		ND
INDURU-5	4/26/200	6-8 6-8	85.8 85.6	5.90 5.89	2.4	<0.27 <0.27	4,860 3,330	<2.2 <2.4	5.3 3.8	<22 <24	<0.54 <0.59	<0.54 <0.59	<540 <590	12.9 8.2	<5.4 <5.9			6.7 4.9	2,000 1,180	104 74.0	<0.048	10.1 6.4	1,000 747	<2.2 <2.4	<1.1 <1.2	<540 <590	<1.1 <1.2	13.8 10.4	38.8 20.0	ND ND	0.002 ND		ND ND	ND ND
		8-10	86.8	5.86	<1.5	<0.27	3,640	<2.5	4.5	<25	<0.62	< 0.62	<620	45.4	<6.2	14.5	17,800	5.9	1,230	83.7	<0.038	7.3	710	<2.5	<1.2	<620	<1.2	21.6	22.8	ND	ND	ND	ND	ND
		0-2 2-4	90.3 93.6	4.95 4.71	10.4 3.4	<0.26 <0.25	4,840 3,900	<2.1 <2.2	5.3 8.2	33.5 <23	<0.52 <0.57	<0.52 <0.57	<520 <570	14.2 13.0	<5.2 <5.7		14,200 29,800	21.3 8.2	1,630 1,480	68.6 116	0.16 0.049	7.8 8.4	1,190 802	<2.1 <2.3	<1.0 <1.1	<520 <570	<1.0 <1.1	15.5 32.0	22.7 29.7		0.0378			ND ND
NBGRD-6	4/26/200	6 4-6	88.6	5.80	3.7	< 0.25	4,100	<2.2	5.7	<22	< 0.54	<0.54	<540	11.5	<5.4	9.6	20,000	5.1	1,790	103	< 0.037	9.1	804	<2.2	<1.1	<540	<1.1	16.5	28.4	ND	ND	ND	ND	ND
		6-8 8-10	86.6 89.1	6.06 6.04	3.3 2.3	<0.27 <0.26	3,530 3,610	<2.2 <2.3	3.9 10.3	<22 <23	<0.55 <0.58	<0.55 <0.58	<550 <580	9.3 13.2	<5.5 <5.8		14,300 18,200			78.0 79.3	<0.034 <0.034		656 584	<2.2 <2.3		<550 <580	<1.1 <1.2	13.4 15.3	22.1 28.2	ND ND	ND ND	ND ND	ND ND	ND ND
		0-2	89.1	8.12	1.5	<0.25	18,100	<2.3	<2.3	<23	<0.58	<0.58			21.1			3.1	12,700	357	0.048		<570	<2.3		1,250	<1.1	56.9	34.3	ND		ND ND	ND ND	ND
NBGRD-7	4/26/200	2-4	89.7	7.61	<1.4	<0.25	3,510	<2.2	3.8	<22	< 0.55	< 0.55	<550 <530	9.8 14.1	<5.5	11.1			1,190	56.4	< 0.035	5.3	1,060	<2.2		<550 <530	<1.1	15.4	16.4	ND			0.0015	ND ND
NDGRD-/	4/26/200	6-8 6-8	91.0 88.8	6.56 7.00	3.1 5.7	<0.26 <0.25	4,930 4,090	<2.1 <2.4	4.6 5.0	<21 <24	<0.52 <0.59	<0.52 <0.59	<590	9.3	<5.2 <5.9	14.6 12.7	12,400	4.6	1,480	70.1 51.5	<0.033 <0.036	7.5 6.7	1,290 1,200	<2.1 <2.4		<520 <590	<1.0 <1.2	25.6 14.6	23.4 20.2	ND ND		ND ND	ND ND	ND ND
		8-10		8.77	<1.2	<0.25		<2.1	2.7	<21	<0.52					63.6				221	<0.031		558	<2.1			<1.0	40.6	34.6		0.0017		ND	ND

IGWSCC= Default Impact to Groundwater Soil Screening Level RDCSCC= Residential Direct Contact Soil Remediation Standard NRDCSCC: Non-Residential Direct Soil Remediation Standard All Results in mg/kg unless otherwise noted

J- Represents Estimated Concentration
ND= Non Detect
NA= Not Applicable
NR= Not Reported

A- Result is from Znd Run or 2nd Peak

B- Result is from Znd Run or 2nd Peak

Sample Above NRDCSCC
 Sample Above RDCSCC but Below NRDCSCC
 Sample Above IGWSCC but Below NRDCSCC and RDCSCC
 Method Detection Limit Greater then IGWSCC

Table B-2- Restricted Area Data Table Hess Corporation- Port Reading Refinery 750 Cliff Road

Port Reading, Middlesex County, New Jersey North Landfarm Soil Sampling Summary

								Vol	atile Organ	nics								В	ase Neutra	ls				
Sample Location	Sample Date	Sample Depth	Elevation above mean sea level (msl) in feet	Solids, Percent	Acetone (CAS # 67-64-1)	Benzene (CAS # 9072-35-9)	2-Butanone (MEK) (CAS # 78-93-3)	Carbon disulfide (CAS # 75-15-0)	Ethylbenzene (CAS # 100-41-4)	Methylene chloride (CAS # 75-08-2)	Toluene (CAS # 108-88-3)	Xylene (total) (CAS # 1330-20-7)	Total TIC, Volatile	Benzo(a)anthracene (CAS # 56-55-3)	Benzo(a)pyrene (CAS # 50-32-8)	Benzo(b)fluoranthene (CAS # 205-99-2)	Chrysene (CAS # 218-01-9)	Dimethyl phthalate (CAS # 84-66-3)	bis(2- Ethylhexyl)phthalate (CAS # 117-81-7)	Fluoranthene (CAS # 206-44-0)	Phenanthrene (CAS # 85-01-8)	Pyrene (CAS # 129-00-0)	1,2,4-Trichlorobenzene (CAS # 120-82-1)	Total TIC, Semi-Volatile
	NRDCSCC			-	1000	13	1,000		1,000	210	1,000	1,000	-	4	0.66	4	40	1,000	210	10,000		10,000	1,200	-
	RDCSCC			-	1000	3	1,000		1,000	49	1,000	410	-	0.9	0.66	0.9	9	1,000	49	2,300		1,700	68	
	IGWSCC	(0-2)	(9-7)	80.6	100 ND	ND	50 ND	ND	100 ND	1 ND	500 ND	67 ND	ND	500 0.0153 J	100 ND	50 0.0125 J	500 0.0172 J	50 ND	100 ND	100 0.0261 J	ND	100 0.0258 J	100 ND	0.99 J
		(2-4)	(7-5)	90.1	ND ND	ND	ND	0.00076 J	ND	ND	0.0086	ND	ND ND	ND	ND	ND	ND	ND ND	0.0627 J	ND	ND	ND	ND	0.99 3
NLF-1	10/27/2009	(4-6)	(5-3)	82.2	ND ND	ND	ND	0.00076 J	ND	ND ND	0.0017	ND	ND ND	ND ND	ND	ND ND	ND	ND	0.0415 J	ND	ND	ND ND	ND	0.42 J
	10/2//2000	(6-8)	(3-1)	85	ND	ND	ND	0.0018 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	Ī	(8-10)	(1-(-1))	87.9	ND	ND	ND	0.0051	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
		(0-2)	(10-8)	86.6	0.0343	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.560 J
		(2-4)	(8-6)	89.4	0.02900	ND	ND	0.0018 J	ND	ND	0.0042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.560 J
NLF-2	10/27/2009	(4-6)	(6-4)	88.5	0.0148	ND	ND	0.0012 J	ND	ND	0.00043 J	ND	ND	ND	ND	ND	ND	0.0498 J	ND	ND	ND	ND	ND	4.540J
	<u> </u>	(6-8)	(4-2)	87.8	0.0053 J	ND	ND	0.0015 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0405 J	ND	ND	ND	ND	ND	1.670 J
		(8-10)	(2-0)	81	0.0068 J	ND	ND	0.0021 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0473 J	ND	ND	ND	ND	ND	1.480 J
		(0-2)	(9-7)	66.3	0.0411	ND	ND	0.0039 J	ND	ND	ND	ND	ND	0.0231 J	0.0146 J	ND	0.0209 J	ND	ND	0.0208 J	ND	0.0345 J	ND	2.40 J
		(2-4)	(7-5)	67.6	0.0389	ND	ND	0.0031 J	ND	ND	0.0012 J	ND	ND	ND	ND	ND	0.0142 J	ND	0.0791 J	0.0201 J	ND	0.0258 J	ND	15.10 J
NLF-3	10/27/2009	(4-6)	(5-3)	73.2	0.0191	ND	ND	0.0017 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0185 J	ND	10.790 J
	-	(6-8)	(3-1)	66	0.0377	ND	ND	0.0044 J	ND	ND	0.0008 J	ND 0.0000 I	ND 0.000 I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.660 J
		(8-10) (0-2)	(1-(-1))	80.1 82.7	0.0385	ND ND	ND ND	0.0017 J ND	ND ND	ND ND	ND 0.0010	0.0009 J ND	0.039 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.370 J 0
	-	(2-4)	(9-7) (7-5)	79.2	ND ND	ND	ND ND	0.0012 J	ND	ND ND	ND	ND	ND	0.0167 J	0.0117 J	ND	0.0142 J	ND ND	ND	0.0253 J	ND ND	0.0293 J	ND ND	0.600 J
NLF-4	10/27/2009	(4-6)	(5-3)	82.8	ND ND	ND	ND	0.0012 J	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	0.420 J
INCI -4	10/2//2009	(6-8)	(3-3)	74.7	0.104	ND	0.0177	0.00213 0.0010 J	ND	ND ND	0.0019	0.0010 J	0.0387 J	0.0221 J	0.0158 J	0.0183 J	0.0253 J	ND	ND	0.0373 J	0.0182 J	0.047	ND	35.490 J
		(8-10)	(1-(-1))	68.5	0.0939	ND	0.0141 J	0.0010 J	ND	ND A	0.0010 J	ND	0.0007 U	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.170 J
	+	(0-2)	(9-7)	77.9	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
		(2-4)	(7-5)	46.3	ND	ND	ND	0.0020 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.440 J
NLF-5	10/27/2009	(4-6)	(5-3)	87.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
		(6-8)	(3-1)	70.9	0.0283	ND	ND	0.0159	ND	0.0043 J	0.0023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.170 J
	Ī	(8-10)	(1-(-1))	88.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0

IGWSCC= Default Impact to Groundwater Soil Screening Level RDCSCC= Residential Direct Contact Soil Remediation Standard NRDCSCC= Non-Residential Direct Soil Remediation Standard CAS = Chemical Abstract Service Number

ND= Non Detect NA= Not Applicable NR= Not Reported All Results in mg/kg unless otherwise noted
J- Represents Estimated Concentration
- Method Detection Limit Greater then IGWSCC

Sample Above IGWSCC but Below NRDCSCC and RDCSCC
 Sample Above RDCSCC but Below NRDCSCC
 Sample Above NRDCSCC

Table B-2 Restricted Area Data Table Hess Corporation- Port Reading Refinery 750 Cliff Road

Port Reading, Middlesex County, New Jersey North Landfarm Soil Sampling Summary

														Meta	ls													Pesticides	;
Sample Location	Sample Date	Sample Depth	Aluminum (CAS # 7249-90-5)	Antimony (CAS # 7440-36-0)	Arsenic (CAS # 7440-38-2)	Barium (CAS # 7440-39-3)	Beryllium (CAS # 7440-41-7)	Cadmium (CAS # 7440-43-9)	Calcium (CAS # 7440-47-3)	Chromium (CAS # 7440-47-3)	Cobalt (CAS # 7440-48-4)	Copper (CAS # 7440-50-8)	Cyanide (CAS # 74-90-8)	Iron (CAS # 7439-89-6)	Lead (CAS # 7439-92-1)	Magnesium (CAS # 7439-95-4)	Manganese (CAS # 7439-96-5)	Mercury (CAS # 7439-97-6)	Nickel (CAS # 7440-02-0)	Potassium (CAS # 7440-09-7)	Selenium (CAS # 7782-49-2)	Silver (CAS # 7440-22-4)	Sodium (CAS # 7440-23-5)	Thallium (CAS # 7440-28-0)	Vanadium (CAS # 7440-62-2)	Zinc (CAS # 7440-66-6)	4,4'-DDD (CAS # 72-54-8)	4,4'-DDE (CAS # 72-55-9)	4,4'-DDT (CAS # 50-29-3)
	NRDCSCC		-	340	20	47,000	140	100	-	-		600	21,000	-	600	-	-	270	2,400	-	3,100	4,100	-	2	7,100	1,500	12	9	8
	RDCSCC			14	20	700	16	39				600	1,100		400	-		14	250		63	110		2	370	1,500	3	2	2
	IGWSCC		-							-		-					-										50	50	500
		(0-2)	4,620	<2.4	9.8	40.1	<0.59	0.79	<590	19.8	<5.9	17.3	<0.30	24,400	18.0	1,490	85.3	0.18	10.0	<1,200	<2.4	<1.2	<1,200	<1.2	26.7	48.3	0.0208	0.0048	ND
= .		(2-4)	2,720	<2.2	2.5	<22	<0.56	<0.56	<560	7.5	<5.6	6.6	<0.24	9,940	4.8	1,010	40.4	<0.033	4.8	<1,100	<2.2	<1.1	<1,100	<1.1	11.6	14.0	0.0041	ND	ND
NLF-1	10/27/2009	(4-6)	2,950	<2.3	2.3	<23	<0.58	<0.58	976	10.2	<5.8	14.0	<0.29	13,800	7.6	959	62.8	0.073	6.4	<1,200	<2.3	<1.2	<1,200	<1.2	11.4	58.3	0.002	ND	ND
		(6-8)	3,050	<2.5	4.0	<25	<0.61	<0.61	<610	10.7	<6.1	9.9	<0.26	12,200	5.1	1,080	55.2	<0.034	5.3	<1,200	<2.5	<1.2	<1,200	<1.2	11.4	16.1	ND	ND	ND
		(8-10)	3,000	<2.2	<2.2	<22	<0.55	<0.55	<550	8.3	< 5.5	9.4	<0.26	8,430	3.4	932	46.8	<0.037	6.8	<1,100	<2.2	<1.1	<1,100	<1.1	9.3	22.5	0.0059	0.0018	ND
		(0-2)	4,870	<2.3	6.2	<23	<0.58	<0.58	<580	30.0	<5.8	19.1	<0.25	23,500	9.8	1,660	93.9 78.3	0.095	9.7	<1,200	<2.3	<1.2 <1.2	<1,200	<1.2	25.6 26.8	25.6	0.0141	0.0028	0.0047
NLF-2	40/07/0000	(2-4) (4-6)	4,670 4.510	<2.3 <2.2	6.7	<23 <22	<0.58 <0.55	<0.58 <0.55	<580	32.5 14.2	<5.8 <5.5	16.4	<0.25 <0.24	20,600 21.200	7.9 8.2	1,590 1.680	91.2	0.060 <0.032	8.1 9.4	<1,200	<2.3 <2.2		<1,200 <1.100	<1.2		28.3 31.4	0.0201	0.0024 0.0016	ND
INLF-Z	10/27/2009	(6-8)	3,220	<2.4	4.2 3.1	<24	<0.55	<0.59	742 <590	8.6	<5.9	13.4 13.0	<0.24	10,900	2.8	1,080	62.6	<0.032	6.0	<1,100 <1,200	<2.4	<1.1 <1.2	<1,100	<1.1 <1.2	19.3 11.3	18.2	ND 0.0015	ND	ND ND
		(8-10)	7.060	<2.4	13.2	34.0	<0.59	<0.59	667	22.4	<6.1	27.8	<0.24	31,900	22.1	2.200	92.7	0.037	10.0	2,500	<2.4	<1.2	<1,200	<1.2	31.1	36.0	0.0013	ND	ND
-		(0-10)	13,200	<2.4	18.8	41.1	0.51	0.74	911	32.4	7.5	42.4	<0.29	32,100	32.1	3,700	225	0.099	20.6	2,350	<2.0	<1.0	<1,000	<1.0	40	81.3	0.0020	ND	ND
		(2-4)	8,260	<2.0	9.2	28.7	<0.55	<0.55	1,040	20.6	<5.5	24.7	<0.32	22,100	20.5	2,990	165	0.033	13.8	1,590	<2.2	<1.1	<1,100	<1.1	25.4	50.5	0.0043 ND	ND	ND
NLF-3	10/27/2009	(4-6)	10,700	<2.1	9.9	37.6	0.62	<0.53	895	24.7	7.7	32.9	<0.32	24,900	24.7	3,510	229	0.11	21.5	1,960	<2.1	<1.1	<1,100	<1.1	31.9	81.1	0.0030	ND	0.0062
	10/2//2000	(6-8)	15,500	<2.0	7.4	51.6	0.67	0.92	2,710	30.8	8.2	12.7	<0.33	53,700	8.9	5,740	477	0.078	21.9	2,940	<2.0	<1.0	1,330	<1.0	35.6	65.6	ND	ND	ND
	l l	(8-10)	8,350	2.4	10.9	34.1	<0.59	0.88	1,250	20.7	6.6	22.6	<0.30	47.800	10.4	2,750	267	0.14	15.3	<1,200	<2.4	<1.2	<1,200	<1.2	40.2	51.7	0.0032	0.0019	ND
		(0-2)	2,550	<2.4	<2.4	<24	<0.60	<0.60	<600	7.6	<6.0	6.8	<0.25	11,700	4.4	984	49.8	< 0.036	5.9	<1,200	<2.4	<1.2	<1,200	<1.2	10.8	17.4	ND	ND	ND
		(2-4)	5,130	<2.1	4.8	34.7	< 0.53	0.58	<530	15.2	7.9	27.0	<0.26	17,500	10.1	2,340	98.7	0.047	16.5	<1,100	<2.1	<1.1	<1,100	<1.1	18.1	47.3	0.0039	0.0021	ND
NLF-4	10/27/2009	(4-6)	3,260	<2.4	2.6	<24	<0.60	<0.60	<600	9.3	<6.0	10.5	<0.27	11,100	4.2	1,170	47.0	< 0.039	10.6	<1,200	<2.4	<1.2	<1,200	<1.2	11.7	30.0	0.0024	ND	ND
		(6-8)	9,630	<2.0	9.5	33.4	<0.50	<0.50	957	21.8	6.2	29.2	<0.27	24,700	19.9	3,160	218	0.14	15.5	1,770	<2.0	<1.0	<1,000	<1.0	26.5	54.3	0.0036	0.0033	ND
	<u> </u>	(8-10)	12,300	<2.2	10.1	41.3	0.60	0.57	1,230	27.4	7.7	32.0	< 0.35	27,700	20.1	4,230	233	0.13	18.9	2,250	<2.2	<1.1	<1,100	<1.1	32.5	63.8	0.0022	0.0019	ND
		(0-2)	8,190	<2.0	6.4	36.7	<0.50	<0.50	<500	21.6	<5.0	23.8	<0.26	22,100	18.7	2,630	106	0.13	11.7	1,700	<2.0	<1.0	<1,000	<1.0	24.9	35.8	0.0027	ND	0.0023
		(2-4)	13,900	<2.0	13.6	45.7	0.62	0.78	1,560	36.7	10.5	78.9	<0.44	21,600	28.8	3,000	116	0.34	28.1	2,490	<2.0	<1.0	<1,000	<1.0	43.2	85.2	0.0027	ND	ND
NLF-5	10/27/2009	(4-6)	3,510	<2.3	4.4	<23	<0.58	<0.58	<580	10.3	<5.8	10.0	<0.23	15,100	10.3	1,370	61.8	< 0.037	6.6	<1,200	<2.3	<1.2	<1,200	<1.2	14.9	19.8	0.0015	ND	ND
		(6-8)	9,550	<2.0	5.6	37.6	<0.50	<0.50	944	23	<5.0	30.1	<0.33	14,400	18.2	2,040	77.8	0.32	10.7	1,800	<2.0	<1.0	<1,000	<1.0	28.1	30.3	0.0053	ND	ND
		(8-10)	3,130	<2.2	3.5	<22	<0.56	<0.56	<560	8.4	<5.6	10.6	<0.23	16,000	2.5	1,180	69.6	<0.033	6.5	<1,100	<2.2	<1.1	<1,100	<1.1	14.3	20.0	ND	ND	ND

IGWSCC= Default Impa RDCSCC= Residential NRDCSCC= Non-Reside CAS = Chemical Abstrac IGWSCC= Default Impact to Groundwater Soil Screening Level RDCSCC= Residential Direct Contact Soil Remediation Standard NRDCSCC Non-Residential Direct Soil Remediation Standard

ND= Non Detect NA= Not Applicable NR= Not Reported All Results in mg/kg unless otherwise noted
J- Represents Estimated Concentration
- Method Detection Limit Greater then IGWSCC

- Sample Above IGWSCC but Below NRDCSCC and RDCSCC

- Sample Above RDCSCC but Below NRDCSCC

- Sample Above NRDCSCC

EXHIBIT C

Deed Notice as Institutional Control and Impermeable Cap and Fence as Engineering Control

Exhibit C-1: Institutional Control

Exhibit C-1(A): Description and Estimated Size

The North Landfarm is located along the northeast boundary of the refinery property, the dimensions are approximately 145-feet (ft) long by 100-ft wide, and it is bounded on all sides by raised earthen dikes. The North Landfarm was formed in 1974 by constructing an orthogonal above-grade earthen dike in the northwest corner of the existing dike protected area around Tank 7945.

The ground surface elevation within the North Landfarm ranges from 10.5- to 12.5-ft above mean sea level (msl) as defined by the National Geodetic Vertical Datum of 1929. The elevation of the top of the earthen dike is 18-ft. The 100-year flood level at the HC-PR facility is 10-ft above msl.

Exhibit C-1(B): Description of Restrictions on Property

By operation of this Deed Notice, an impermeable cap will be installed over the entire area of AOC-1 the North Landfarm and surrounded by a 5-ft high fence enclosing the area, a 30-year Post Closure Monitoring Program will be instituted, with monthly inspection of the cap and fence.

Exhibit C-1(C): Objective of Restrictions

The Deed Notice serves to notify current and future site occupants of the presence of the Landfarm as well as the Engineering control. The impermeable cap will reduce or eliminate the migration of constituents and function as infiltration control, erosion and runoff control, as well as wind erosion control. The fence will serve as a physical barrier to control access to the restricted area.

Exhibit C-2: Engineering Control – Impermeable Cap and Fence

Exhibit C-2(A): General Description of Engineering Control

The engineering control includes an impermeable cap consisting of geosynthetic clay liner acting as a hydraulic barrier. The cap control measures approximately 145-ft by 100-ft, with a final thickness of 3-ft. The cap will be covered with 1.5-ft of soil as a drainage layer, and 0.5-ft of 3-inch aggregate as a physical barrier. The total area is approximately 14,500-square ft (0.332 acre). Post-capping a 5-ft high fence will be installed surrounding the area, with Entry Limited by a locked gate. Signs will be located on all sides of the fence, which will read "Authorization Required for Entry" or similar appropriate wording.

Monthly inspections will be undertaken for the duration of the 30-year Post Closure Monitoring Plan. The inspector will be check for signs of damage and deterioration, when necessary, corrective actions will be undertaken to remain the integrity of the fence. A logbook will be kept, detailing the dates and details of inspections, along with any corrective actions taken. Inspections will be conducted by an individual familiar with post-closure care requirements.

Exhibit C-2(B): Objective and Function of Impermeable Cap and Fence

The impermeable cap will reduce or eliminate the migration of constituents and function as infiltration control, erosion and runoff control, as well as wind erosion control. The fence will serve as a physical barrier to control access to the restricted area.